The vertical image projection method for migration stretch compensation
True amplitude inversion is often carried out without taking into account migration distortions to the wavelet. Seismic migration leaves a dip-dependent effect on the wavelet that can cause significant inaccuracies in the inverted impedances obtained from conventional inversion approaches based on 1D vertical convolutional modelling. Neglecting this effect causes misleading inversion results and leakage of dipping noise and migration artifacts from higher frequency bands to the lower frequencies. I have observed that despite dip-dependency of this effect, low-dip and flat events may also suffer if they are contaminated with cross-cutting noise, steep migration artifacts, and smiles. In this paper I propose an efficient, effective and reversible data pre-conditioning approach that accounts for dip-dependency of the wavelet and is applied to migrated images prior to inversion. My proposed method consists of integrating data with respect to the total wavenumber followed by the differentiation with respect to the vertical wavenumber. This process is equivalent to applying a deterministic dip-consistent pre-conditioning that projects the data from the total wavenumber to the vertical wavenumber axis. This preconditioning can be applied to both pre- and post-stack data as well as to amplitude variation with offset (AVO) attributes such as intercept and gradient before inversion. The vertical image projection methodology that I propose here reduces the impact of migration artifacts such as cross-cutting noise and migration smiles and improves inverted impedances in both synthetic and real data examples. In particular I show that neglecting the proposed pre-conditioning leads to anomalously higher impedance values along the steeply dipping structures.