Fluid discrimination with novel anisotropic fluid factor based on the Gassmann theory

2020 ◽  
Author(s):  
Hongxue Zhang* ◽  
Xingyao Yin ◽  
Zhaoyun Zong
1996 ◽  
Vol 260 (3-4) ◽  
pp. 441-446 ◽  
Author(s):  
A.J. Bain ◽  
P. Chandna ◽  
G. Butcher

2010 ◽  
Vol 38 (1) ◽  
pp. 015104 ◽  
Author(s):  
Radoslaw Ryblewski ◽  
Wojciech Florkowski
Keyword(s):  

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA61-WA67 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu ◽  
Zhiping Wu

Elastic inverse-scattering theory has been extended for fluid discrimination using the time-lapse seismic data. The fluid factor, shear modulus, and density are used to parameterize the reference medium and the monitoring medium, and the fluid factor works as the hydrocarbon indicator. The baseline medium is, in the conception of elastic scattering theory, the reference medium, and the monitoring medium is corresponding to the perturbed medium. The difference in the earth properties between the monitoring medium and the baseline medium is taken as the variation in the properties between the reference medium and perturbed medium. The baseline and monitoring data correspond to the background wavefields and measured full fields, respectively. And the variation between the baseline data and monitoring data is taken as the scattered wavefields. Under the above hypothesis, we derived a linearized and qualitative approximation of the reflectivity variation in terms of the changes of fluid factor, shear modulus, and density with the perturbation theory. Incorporating the effect of the wavelet into the reflectivity approximation as the forward solver, we determined a practical prestack inversion approach in a Bayesian scheme to estimate the fluid factor, shear modulus, and density changes directly with the time-lapse seismic data. We evaluated the examples revealing that the proposed approach rendered the estimation of the fluid factor, shear modulus, and density changes stably, even with moderate noise.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Faizuddin Ahmed

We present a cylindrically symmetric, Petrov type D, nonexpanding, shear-free, and vorticity-free solution of Einstein’s field equations. The spacetime is asymptotically flat radially and regular everywhere except on the symmetry axis where it possesses a naked curvature singularity. The energy-momentum tensor of the spacetime is that for an anisotropic fluid which satisfies the different energy conditions. This spacetime is used to generate a rotating spacetime which admits closed timelike curves and may represent a Cosmic Time Machine.


2012 ◽  
Vol 109 (11) ◽  
Author(s):  
O. Ohia ◽  
J. Egedal ◽  
V. S. Lukin ◽  
W. Daughton ◽  
A. Le

2015 ◽  
Vol 93 (10) ◽  
pp. 1100-1105 ◽  
Author(s):  
Shri Ram ◽  
S. Chandel ◽  
M.K. Verma

The hypersurface homogeneous cosmological models are investigated in the presence of an anisotropic fluid in the framework of Lyra geometry. Exact solutions of field equations are obtained by applying a special law of variation for mean Hubble parameter that gives a negative constant value of the deceleration parameter. These solutions correspond to anisotropic accelerated expanding cosmological models that isotropize for late time even in the presence of anisotropic fluid. The anisotropy of the fluid also isotropizes at late time. Some physical and kinematical properties of the model are also discussed.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1379-1384 ◽  
Author(s):  
H. CULETU

A direct relation between the time-dependent Milne geometry and the Rindler spacetime is shown. Milne's metric corresponds to the region beyond Rindler's event horizon (in the wedge t ≻ |x|). We point out that inside a Schwarzschild black hole and near its horizon, the metric may be Milne's flat metric. It was found that the shear tensor associated to a congruence of fluid particles of the RHIC expanding fireball has the same structure as that corresponding to the anisotropic fluid from the black hole interior, even though the latter geometry is curved.


2021 ◽  
Vol 36 (04) ◽  
pp. 2150021
Author(s):  
M. Farasat Shamir ◽  
Adnan Malik ◽  
G. Mustafa

This work aims to investigate the wormhole solutions in the background of [Formula: see text] theory of gravity, where [Formula: see text] is Ricci scalar, [Formula: see text] is scalar potential, and [Formula: see text] is the kinetic term. We consider spherically symmetric static space–time for exploring the wormhole geometry with anisotropic fluid. For our current analysis, we consider a particular equation of state parameter to study the behavior of traceless fluid and examine the physical behavior of energy density and pressure components. Furthermore, we also choose a particular shape function and explore the energy conditions. It can be noticed that energy conditions are violated for both shape functions. The violation of energy conditions indicates the existence of exotic matter and wormhole. Therefore, it can be concluded that our results are stable and realistic. The interesting feature of this work is to show two- and three-dimensional plotting for the analysis of wormhole geometry.


2021 ◽  
Vol 36 (21) ◽  
pp. 2150153
Author(s):  
Joaquin Estevez-Delgado ◽  
Noel Enrique Rodríguez Maya ◽  
José Martínez Peña ◽  
Arthur Cleary-Balderas ◽  
Jorge Mauricio Paulin-Fuentes

A stellar model with an electrically charged anisotropic fluid as a source of matter is presented. The radial pressure is described by a Chaplygin state equation, [Formula: see text], while the anisotropy [Formula: see text] is annulled in the center of the star [Formula: see text] is regular and [Formula: see text], the electric field, is also annulled in the center. The density pressures and the tangential speed of sound are regular, while the radial speed of sound is monotonically increasing. The model is physically acceptable and meets the stability criteria of Harrison–Zeldovich–Novikov and in respect of the cracking concept the solution is unstable in the region of the center and potentially stable near the surface. A graphic description is presented for the case of an object with a compactness rate [Formula: see text], mass [Formula: see text] and radius [Formula: see text] km that matches the star Vela X-1. Also, the interval of the central density [Formula: see text], which is consistent with the expected magnitudes for this type of stars, which shows that the behavior is accurate for describing compact objects.


2017 ◽  
Vol 114 (42) ◽  
pp. 11087-11091 ◽  
Author(s):  
Lulu Liu ◽  
Simon Kheifets ◽  
Vincent Ginis ◽  
Andrea Di Donato ◽  
Federico Capasso

We examine the motion of periodically driven and optically tweezed microspheres in fluid and find a rich variety of dynamic regimes. We demonstrate, in experiment and in theory, that mean particle motion in 2D is rarely parallel to the direction of the applied force and can even exhibit elliptical orbits with nonzero orbital angular momentum. The behavior is unique in that it depends neither on the nature of the microparticles nor that of the excitation; rather, angular momentum is introduced by the particle’s interaction with the anisotropic fluid and optical trap environment. Overall, we find this motion to be highly tunable and predictable.


Sign in / Sign up

Export Citation Format

Share Document