Wormhole solutions in modified f(R,φ,X) gravity

2021 ◽  
Vol 36 (04) ◽  
pp. 2150021
Author(s):  
M. Farasat Shamir ◽  
Adnan Malik ◽  
G. Mustafa

This work aims to investigate the wormhole solutions in the background of [Formula: see text] theory of gravity, where [Formula: see text] is Ricci scalar, [Formula: see text] is scalar potential, and [Formula: see text] is the kinetic term. We consider spherically symmetric static space–time for exploring the wormhole geometry with anisotropic fluid. For our current analysis, we consider a particular equation of state parameter to study the behavior of traceless fluid and examine the physical behavior of energy density and pressure components. Furthermore, we also choose a particular shape function and explore the energy conditions. It can be noticed that energy conditions are violated for both shape functions. The violation of energy conditions indicates the existence of exotic matter and wormhole. Therefore, it can be concluded that our results are stable and realistic. The interesting feature of this work is to show two- and three-dimensional plotting for the analysis of wormhole geometry.

2019 ◽  
Vol 28 (02) ◽  
pp. 1950039 ◽  
Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

Traversable wormholes, tunnel-like structures introduced by Morris and Thorne [Am. J. Phys. 56 (1988) 395], have a significant role in connection of two different spacetimes or two different parts of the same spacetime. The characteristics of these wormholes depend upon the redshift and shape functions which are defined in terms of radial coordinate. In literature, several shape functions are defined and wormholes are studied in [Formula: see text] gravity with respect to these shape functions [F. S. N. Lobo and M. A. Oliveira, Phys. Rev. D 80 (2009) 104012; H. Saiedi and B. N. Esfahani, Mod. Phys. Lett. A 26 (2011) 1211; S. Bahamonde, M. Jamil, P. Pavlovic and M. Sossich, Phys. Rev. D 94 (2016) 044041]. In this paper, two shape functions (i) [Formula: see text] and (ii) [Formula: see text], [Formula: see text], are considered. The first shape function is newly defined, however, the second one is collected from the literature [M. Cataldo, L. Liempi and P. Rodríguez, Eur. Phys. J. C 77 (2017) 748]. The wormholes are investigated for each type of shape function in [Formula: see text] gravity with [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are real constants. Varying the parameter [Formula: see text] or [Formula: see text], [Formula: see text] model is studied in five subcases for each type of shape function. In each case, the energy density, radial and tangential pressures, energy conditions that include null energy condition, weak energy condition, strong energy condition and dominated energy condition and anisotropic parameter are computed. The energy density is found to be positive and all energy conditions are obtained to be violated which support the existence of wormholes. Also, the equation-of-state parameter is obtained to possess values less than [Formula: see text], that shows the presence of the phantom fluid and leads toward the expansion of the universe.


Universe ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 48 ◽  
Author(s):  
Ghulam Mustafa ◽  
Ibrar Hussain ◽  
M. Farasat Shamir

The current paper is devoted to investigating wormhole solutions with an exponential gravity model in the background of f ( R ) theory. Spherically symmetric static spacetime geometry is chosen to explore wormhole solutions with anisotropic fluid source. The behavior of the traceless matter is studied by employing a particular equation of state to describe the important properties of the shape-function of the wormhole geometry. Furthermore, the energy conditions and stability analysis are done for two specific shape-functions. It is seen that the energy condition are to be violated for both of the shape-functions chosen here. It is concluded that our results are stable and realistic.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050146
Author(s):  
G. Mustafa ◽  
Tie-Cheng Xia

In this paper, we examine the wormhole solutions by taking two different anisotropic models in Rastall gravity. For this purpose, we shall discuss anisotropic fluid to construct two different anisotropic models. Further, we shall employ two specific shape functions to calculate the behavior of energy conditions. The presence of exotic matter is confirmed in all the cases of this study due to the violation of the null energy condition. All the properties of shape function under both anisotropic models are fulfilled. It is noticed that wormhole solutions exist under the particular values of involved parameters in different cases in Rastall gravity.


2019 ◽  
Vol 34 (28) ◽  
pp. 1950226 ◽  
Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

Morris and Thorne [M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988)] proposed geometrical objects called traversable wormholes that act as bridges in connecting two spacetimes or two different points of the same spacetime. The geometrical properties of these wormholes depend upon the choice of the shape function. In the literature, these are studied in modified gravities for different types of shape functions. In this paper, the traversable wormholes having shape function [Formula: see text] are explored in [Formula: see text] gravity with [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are real constants. For different values of constants in function [Formula: see text], the analysis is done in various cases. In each case, the energy conditions, equation of state parameter and anisotropic parameter are determined.


Author(s):  
H J Rea ◽  
R Sung ◽  
J R Corney ◽  
D E R Clark ◽  
N K Taylor

Effective content-based shape retrieval systems would allow engineers to search databases of three-dimensional computer-aided design (CAD) models for objects with specific geometries or features. Much of the academic work in this area has focused on the development of indexing schemes based on different types of three-dimensional to two-dimensional ‘shape functions’. Ideally, the shape function used to generate a distribution should be easy to compute and permit the discrimination of both large and small features. The work reported in this paper describes the properties of three new shape distributions based on computationally simple shape functions. The first shape function calculates the arithmetic difference between distributions derived (using the original D2 distance shape function) from both a three-dimensional model and its convex hull. The second shape function is obtained by sampling the angle between random pairs of facets on the object. The third shape function uses the surface orientation to filter the results of a distance distribution. The results reported in this paper suggest that these novel shape functions improve significantly the ability of shape distributions to discriminate between complex engineering parts.


Author(s):  
Bikram Ghosh ◽  
Saugata Mitra

This paper deals with some wormhole solutions which are obtained by taking two different shape functions along with zero tidal force. For obtaining wormhole solutions, anisotropic fluid and a equation of state [Formula: see text] related by Chaplygin gas are considered, where [Formula: see text] is the energy density, [Formula: see text] is tangential pressure and [Formula: see text] is positive constant. Energy conditions are examined for two different models, and it is found that major energy conditions are satisfied in a region.


2020 ◽  
Vol 17 (11) ◽  
pp. 2050155
Author(s):  
Ambuj Kumar Mishra ◽  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma

In this work, the solutions of traversable wormholes are investigated inside modified [Formula: see text] gravity under non-commutative geometry since matter possesses Lorentzian density distribution of a particle-like gravitation source. To find the exact wormhole solutions, two different shape functions [Formula: see text], [Formula: see text], and [Formula: see text], [Formula: see text], are considered. The first shape function was proposed by Mishra and Sharma [A new shape function for wormholes in [Formula: see text] gravity and General Relativity, preprint (2020), arXiv:2003.00298v1 [physics.gen-ph]], however the second is newly defined in this paper. The behaviors of both shape functions are analyzed with the throat radius [Formula: see text]. The equation-of-state (EoS) parameter energy conditions, and anisotropy parameter are discussed with graphical point of view.


2020 ◽  
Vol 98 (5) ◽  
pp. 474-483
Author(s):  
Z. Yousaf ◽  
A. Ikram ◽  
M. Ilyas ◽  
M.Z. Bhatti

This paper explores spherically symmetrical dynamical traversable wormhole solutions for an anisotropic fluid configuration in the context of f(R) gravity. We construct the corresponding field equations and investigate the wormhole solutions by specifying the redshift and shape functions for three models of f(R) gravity. Graphical analysis shows that ordinary matter satisfies the null as well as weak energy conditions against the time and radial coordinates for each model. It is concluded that dynamical traversable wormholes are supported by this theory.


2021 ◽  
pp. 2150024
Author(s):  
Bikram Ghosh ◽  
Saugata Mitra ◽  
Subenoy Chakraborty

The paper deals with the static spherically symmetric wormhole solutions in [Formula: see text]-modified gravity theory with anisotropic matter field and for some particular choices for the shape functions. This work may be considered as an extension of the general formalism in [S. Halder, S. Bhattacharya and S. Chakraborty, Phys. Lett. B 791, 270 (2019)] for finding wormhole solutions. For isotropic matter distribution it has been shown that wormhole solutions are possible for zero tidal force and it modifies the claim in [M. Cataldo, L. Leimpi and P. Rodriguez, Phys. Lett. B 757, 130 (2016)]. Finally, energy conditions are examined and it is found that all energy conditions are satisfied in a particular domain with a particular choice of the shape function.


2021 ◽  
pp. 2150167
Author(s):  
Bikram Ghosh ◽  
Saugata Mitra

Considering an energy density of the form [Formula: see text] (where [Formula: see text] is an arbitrary positive constant with dimension of energy density and [Formula: see text]), a shape function is obtained by using field equations of braneworld gravity theory in this paper. Under isotropic scenario wormhole solutions are obtained considering six different redshift functions along with the obtained new shape function. For anisotropic case, wormhole solutions are obtained under the consideration of five different shape functions along with the redshift function [Formula: see text], where [Formula: see text] is an arbitrary constant. In each case all energy conditions are examined and it is found that for some cases all energy conditions are satisfied in the vicinity of the wormhole throat and for the rest of the cases all energy conditions are satisfied except strong energy condition.


Sign in / Sign up

Export Citation Format

Share Document