Benefits of using the high-resolution linear Radon transform with the multichannel analysis of surface waves method

Author(s):  
Julian Ivanov ◽  
Richard Miller ◽  
Daniel Feigenbaum ◽  
Jacob Schwenk
2017 ◽  
Vol 5 (3) ◽  
pp. T287-T298 ◽  
Author(s):  
Julian Ivanov ◽  
Richard D. Miller ◽  
Daniel Feigenbaum ◽  
Sarah L. C. Morton ◽  
Shelby L. Peterie ◽  
...  

Shear-wave velocities were estimated at a levee site by inverting Love waves using the multichannel analysis of surface waves (MASW) method augmented with the high-resolution linear Radon transform (HRLRT). The selected site was one of five levee sites in southern Texas chosen for the evaluation of several seismic data-analysis techniques readily available in 2004. The methods included P- and S-wave refraction tomography, Rayleigh- and Love-wave surface-wave analysis using MASW, and P- and S-wave cross-levee tomography. The results from the 2004 analysis revealed that although the P-wave methods provided reasonable and stable results, the S-wave methods produced surprisingly inconsistent shear-wave velocity [Formula: see text] estimates and trends compared with previous studies and borehole investigations. In addition, the Rayleigh-wave MASW method was nearly useless within the levee due to the sparsity of high frequencies in fundamental-mode surface waves and complexities associated with inverting higher modes. This prevented any reliable [Formula: see text] estimates for the levee core. Recent advances in methodology, such as the HRLRT for obtaining higher resolution dispersion-curve images with the MASW method and the use of Love-wave inversion routines specific to Love waves as part of the MASW method, provided the motivation to extend the 2004 original study by using horizontal-component seismic data for characterizing the geologic properties of levees. Contributions from the above-mentioned techniques were instrumental in obtaining [Formula: see text] estimates from within these levees that were very comparable with the measured borehole samples. A Love-wave approach can be a viable alternative to Rayleigh-wave MASW surveys at sites where complications associated with material or levee geometries inhibit reliable [Formula: see text] results from Rayleigh waves.


2018 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Xinming Qiu ◽  
Chao Wang ◽  
Jun Lu ◽  
Yun Wang

It is essential to extract high-fidelity surface waves in surface-wave surveys. Because reflections usually interfere with surface waves on X components in multicomponent seismic exploration, it is difficult to extract dispersion curves of surface waves. To make matters worse, the frequencies and velocities of higher-mode surface waves are close to those of PS-waves. A method for surface-wave extraction is proposed based on the morphological differences between surface waves and reflections. Frequency-domain high-resolution linear Radon transform (LRT) and time-domain high-resolution hyperbolic Radon transform (HRT) are used to represent surface waves and reflections, respectively. Then, a sparse representation problem based on morphological component analysis (MCA) is built and optimally solved to obtain high-fidelity surface waves. An advantage of our method is its ability to extract surface waves when their frequencies and velocities are close to those of reflections. Furthermore, the results of synthetic and field examples confirm that the proposed method can attenuate the distortion of surface-wave dispersive energy caused by reflections, which contributes to extraction of accurate dispersion curves.


Author(s):  
Xinming Qiu ◽  
Chao Wang ◽  
Jun Lu ◽  
Yun Wang

Extraction of high-resolution surface waves is essential in surface-wave survey. Because reflections usually interfere with surface waves on X-component in a multicomponent seismic exploration, it is difficult to extract dispersion curves of surface waves. The situation goes more serious when the frequencies and velocities of higher-mode surface waves are close to those of PS-waves. A method for surface-wave extraction is proposed based on the morphological differences between reflections and surface waves. Frequency-domain high-resolution linear Radon transform (LRT) and time-domain high-resolution hyperbolic Radon transform (HRT) are used to represent surface waves and reflections respectively. Then, the sparse representation problem based on the morphological component analysis (MCA) is built and optimally solved to obtain high-fidelity surface waves. An advantage of our method is its ability to extract surface waves when their frequencies and velocities are close to those of reflections. Furthermore, results of synthetic and field examples confirm that the proposed method can attenuate the distortion of surface-wave dispersive energy caused by reflections, which contributes to extracting accurate dispersion curves.


Author(s):  
Xinming Qiu ◽  
Chao Wang ◽  
Jun Lu ◽  
Yun Wang

Extraction of high-resolution surface waves is essential in surface-wave survey. Because reflections usually interfere with surface waves on X component in a multicomponent seismic exploration, it is difficult to extract dispersion curves of surface waves. The situation goes more serious when the frequencies and velocities of higher-mode surface waves are close to those of PS-waves. A method for surface-wave extraction is proposed based on the morphological differences between reflections and surface waves. Frequency-domain high-resolution linear Radon transform (LRT) and time-domain high-resolution hyperbolic Radon transform (HRT) are used to represent surface waves and reflections respectively. Then, the sparse representation problem based on the morphological component analysis (MCA) is built and optimally solved to obtain high-fidelity surface waves. An advantage of our method is its ability to extract surface waves when their frequencies and velocities are close to those of reflections. Furthermore, results of synthetic and field examples confirm that the proposed method can attenuate the distortion of surface-wave dispersive energy caused by reflections, which contributes to extracting accurate dispersion curves.


Sign in / Sign up

Export Citation Format

Share Document