Longitudinal single-cell cytokine responses reveal recurrent autoimmune myelin reactivity in relapsing-remitting multiple sclerosis patients

2005 ◽  
Vol 11 (3) ◽  
pp. 251-260 ◽  
Author(s):  
I R Moldovan ◽  
R A Rudick ◽  
A C Cotleur ◽  
S E Born ◽  
J-C Lee ◽  
...  

The relationship between multiple sclerosis (MS) disease activity and myelin protein-induced cytokine responses over time is not elucidated. We addressed this relationship by examining longitudinal cytokine responses to myelin proteins every three months for one year, in the context of gadolinium (gad)-enhancing brain lesions and of clinical relapses. The ELISPOT assay was used to determine the ex vivo cytokine production in response to nine amino acid long peptides spanning the entire proteolipid protein (PLP) and myelin basic protein (MBP) molecules in relapsing—remitting (RR) MS patients and matched healthy controls. We identified three longitudinal levels of myelin-induced cytokine secretion by adding up the positive responses for all PLP or MBP peptides obtained for five timepoints, at three- month intervals: low reactivity (<200 cumulative cytokine-secreting cells), isolated peptide reactivity (201-450 cumulative cytokine- secreting cells) and recurrent protein-wide bursts of cytokine reactivity (> 451 cumulative cytokine-secreting cells). The majority of MS patients showed recurrent bursts to PLP and MBP. In contrast, controls showed a more even distribution between all levels of cytokine reactivity. The majority of patients with gad-enhancing lesions showed PLP/IFNg and MBP/IFNg recurrent burst responses. This is the first longitudinal study on MS patients in which nine amino acid long myelin peptides are used to reveal the broad range of PLP- and MBP- peptide cytokine reactivity across the whole molecule of these two major myelin proteins. This study also reveals the extremely dynamic nature of the immune reactivity to numerous regions of myelin, which can fluctuate dramatically over time. Such fluctuation could hamper the efficacy of antigen-based therapies for MS.

2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Katarzyna Kapica-Topczewska ◽  
François Collin ◽  
Joanna Tarasiuk ◽  
Agata Czarnowska ◽  
Monika Chorąży ◽  
...  

The aim of the study was to verify the association of clinical relapses and brain activity with disability progression in relapsing/remitting multiple sclerosis patients receiving disease-modifying treatments in Poland. Disability progression was defined as relapse-associated worsening (RAW), progression independent of relapse activity (PIRA), and progression independent of relapses and brain MRI Activity (PIRMA). Data from the Therapeutic Program Monitoring System were analyzed. Three panels of patients were identified: R0, no relapse during treatment, and R1 and R2 with the occurrence of relapse during the first and the second year of treatment, respectively. In the R0 panel, we detected 4.6% PIRA patients at 24 months (p < 0.001, 5.0% at 36 months, 5.6% at 48 months, 6.1% at 60 months). When restricting this panel to patients without brain MRI activity, we detected 3.0% PIRMA patients at 12 months, 4.5% at 24 months, and varying from 5.3% to 6.2% between 36 and 60 months of treatment, respectively. In the R1 panel, RAW was detected in 15.6% patients at 12 months and, in the absence of further relapses, 9.7% at 24 months and 6.8% at 36 months of treatment. The R2 group was associated with RAW significantly more frequently at 24 months compared to the R1 at 12 months (20.7%; p < 0.05), but without a statistical difference later on. In our work, we confirmed that disability progression was independent of relapses and brain MRI activity.


2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document