Tsunami-Induced Overturning of Buildings in Onagawa during the 2011 Tohoku Earthquake

2016 ◽  
Vol 32 (4) ◽  
pp. 1989-2007 ◽  
Author(s):  
Kohji Tokimatsu ◽  
Michitaka Ishida ◽  
Shusaku Inoue

A simulation of the tsunami run-up during the 2011 Great Tohoku Earthquake was performed to investigate the mechanisms and differences in overturning failures of buildings in Onagawa, based on a two-dimensional (2-D) shallow water equation with video evidence recorded in the town as reference. The time histories of inundation depth and flow velocity predicted by the analysis enable one to develop a simplified method to estimate the hydrodynamic and buoyant forces acting on a building, as well as its factors of safety against sliding, uplift, and overturning in the time domain. This method was applied to five well-documented cases of buildings that did or did not overturn during the tsunami. Results showed that the proposed method is capable of predicting the differences in building performance qualitatively, including the likelihood, time, and direction of toppling. The results also suggested that the seaward overturning of one building is likely due to its specific topographical location with a hill closely behind that makes the tsunami load significantly less during run-up than during backwash.

Author(s):  
Takuya Miyashita ◽  
Nobuhito Mori

The inundation of the 2011 Tohoku Earthquake Tsunami showed complex behavior over the land. According to the surveys of the Tohoku Earthquake Tsunami in 2011, the behavior of tsunami in urban areas was different from that in rural areas and the damage was not only dependent on the inundation heights but also the local momentum. The buildings are commonly excluded and smoothed off in the topography in the conventional inundation simulation but it’s important to understand the local characteristics of tsunami run-up in urban areas. The purpose of this study is to understand and validate numerical models of tsunami in the urban area.


2015 ◽  
Vol 124 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Nobuhisa MATSUTA ◽  
Yasuhiro SUZUKI ◽  
Nobuhiko SUGITO ◽  
Takashi NAKATA ◽  
Mitsuhisa WATANABE

2012 ◽  
Vol 7 (sp) ◽  
pp. 476-484 ◽  
Author(s):  
Takaaki Uda ◽  
◽  
Kazuya Sakai ◽  
Yukiyoshi Hoshigami ◽  
Yasuhito Noshi ◽  
...  

The massive earthquake with a magnitude of 9.0 occurred at 14:46 on March 11, 2011, with an epicenter 130 km offshore from the Oshika Peninsula in Japan’s northeastern Miyagi Prefecture. After the earthquake, large tsunamis were generated owing to abrupt crustal subsidence and uplift, which inundated Japan’s eastern Pacific Ocean coastline. We carried out field observations to investigate the deformation of a previous river-mouth bar by comparing oblique photographs, and investigated the damage to seawalls and the tsunami inundation depth on the Iwama-Sanuka coast, located north of the Same River in southern Fukushima Prefecture. Here, the results of the field observations on the deformation of the sandy beach and the inundation of the Iwama-Sanuka coast are reported.


2020 ◽  
Vol 20 (2) ◽  
pp. 451-470 ◽  
Author(s):  
James H. Williams ◽  
Thomas M. Wilson ◽  
Nick Horspool ◽  
Ryan Paulik ◽  
Liam Wotherspoon ◽  
...  

Abstract. Transportation infrastructure is crucial to the operation of society, particularly during post-event response and recovery. Transportation assets, such as roads and bridges, can be exposed to tsunami impacts when near the coast. Using fragility functions in an impact assessment identifies potential tsunami effects to inform decisions on potential mitigation strategies. Such functions have not been available for transportation assets exposed to tsunami hazard in the past due to limited empirical datasets. This study provides a suite of observations on the influence of tsunami inundation depth, road-use type, culverts, inundation distance, debris and coastal topography. Fragility functions are developed for roads, considering inundation depth, road-use type, and coastal topography and, for bridges, considering only inundation depth above deck base height. Fragility functions are developed for roads and bridges through combined survey and remotely sensed data for the 2011 Tōhoku earthquake and tsunami, Japan, and using post-event field survey data from the 2015 Illapel earthquake and tsunami, Chile. The fragility functions show a trend of lower tsunami vulnerability (through lower probabilities of reaching or exceeding a given damage level) for road-use categories of potentially higher construction standards. The topographic setting is also shown to affect the vulnerability of transportation assets in a tsunami, with coastal plains seeing higher initial vulnerability in some instances (e.g. for state roads with up to 5 m inundation depth) but with coastal valleys (in some locations exceeding 30 m inundation depth) seeing higher asset vulnerability overall. This study represents the first peer-reviewed example of empirical road and bridge fragility functions that consider a range of damage levels. This suite of synthesised functions is applicable to a variety of exposure and attribute types for use in global tsunami impact assessments to inform resilience and mitigation strategies.


Author(s):  
Ken Hatayama

The Mw9.0 2011 Tohoku, Japan earthquake tsunami damaged 418 oil storage tanks located along the Pacific coast of the Hokkaido, Tohoku, and Kanto Districts of Japan. A wide variety of damage was observed, including movement and deformation of the tank body, scouring of the tank base and ground, and movement or structural fracture of the pipe. In total, 157 of the 418 tanks were moved by the tsunami. By comparing the severity of damage with the inundation depth of the tsunami experienced by the oil storage tank, a fragility curve projecting the damage rate for plumbing is presented, and a rough but easy-to-use method of predicting tsunami damage to an oil storage tank from a given inundation depth is also presented: (i) for inundation depths of 2–5 m, tanks suffer damage to their plumbing, and small tanks (capacity < 100 m3) and empty larger tanks may be moved; (ii) for inundation depths of greater than 5 m, most tanks are moved. The validity of the previously-proposed tsunami tank-movement prediction method is first examined. A comparison of the method’s predictions with the actual damage data from the 2011 Tohoku earthquake tsunami indicates a high hit rate of 76%.


2016 ◽  
Vol 10 (05) ◽  
pp. 1640020 ◽  
Author(s):  
Masaharu Isshiki ◽  
Mitsuteru Asai ◽  
Shimon Eguchi ◽  
Hideyuki O-Tani

The 2011 off the Pacific coast of Tohoku Earthquake was one of the most powerful earthquakes on record in Japan and the huge tsunami caused by the earthquake inflicted extensive damage to the coastal areas of the Tohoku region. To form safe coastal areas, countermeasures against disaster should be developed considering not only tangible infrastructures including breakwater and bridges but also intangible measures including education on disaster prevention and the development of hazard maps. The tsunami run-up analysis is expected to play a role as one of the countermeasures against tsunami. In this research, we aim to establish a tool to effectively analyze the tsunami run-up in urban areas based on the Smoothed particle hydrodynamics (SPH) method. And then, we propose a series of pre-process procedures to develop a detailed geography analysis model that reflects the geography, elevation, and exterior shapes of buildings by referring to 3D location information and digital elevation model data obtained from a geographical information system. Finally, we established a photorealistic visualization method so that citizen can understand the tsunami phenomenon intuitively.


2017 ◽  
Vol 17 (11) ◽  
pp. 1871-1883 ◽  
Author(s):  
Ryosuke Akoh ◽  
Tadaharu Ishikawa ◽  
Takashi Kojima ◽  
Mahito Tomaru ◽  
Shiro Maeno

Abstract. Run-up processes of the 2011 Tohoku tsunami into the city of Kamaishi, Japan, were simulated numerically using 2-D shallow water equations with a new treatment of building footprints. The model imposes an internal hydraulic condition of permeable and impermeable walls at the building footprint outline on unstructured triangular meshes. Digital data of the building footprint approximated by polygons were overlaid on a 1.0 m resolution terrain model. The hydraulic boundary conditions were ascertained using conventional tsunami propagation calculation from the seismic center to nearshore areas. Run-up flow calculations were conducted under the same hydraulic conditions for several cases having different building permeabilities. Comparison of computation results with field data suggests that the case with a small amount of wall permeability gives better agreement than the case with impermeable condition. Spatial mapping of an indicator for run-up flow intensity (IF = (hU2)max, where h and U respectively denote the inundation depth and flow velocity during the flood, shows fairly good correlation with the distribution of houses destroyed by flooding. As a possible mitigation measure, the influence of the buildings on the flow was assessed using a numerical experiment for solid buildings arrayed alternately in two lines along the coast. Results show that the buildings can prevent seawater from flowing straight to the city center while maintaining access to the sea.


2015 ◽  
Vol 124 (2) ◽  
pp. vii-vii
Author(s):  
Nobuhiko SUGITO ◽  
Nobuhisa MATSUTA ◽  
Satoshi ISHIGURO ◽  
Chikara UCHIDA ◽  
Shigeki SANO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document