mouth bar
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Zhiyuan Han ◽  
Huaiyuan Li ◽  
Hualiang Xie ◽  
Bing Yan ◽  
Mingxiao Xie

Based on mass bathymetric data and remote sensing data in the Modaomen Estuary, this study explored the long-term evolutionary characteristics of the mouth bar in the Modaomen Estuary of the Pearl River from 1964 to 2019. In the past 55 years, due to the impact of human activities, such as shoal reclamation and estuarine regulation in the Modaomen Estuary, the river mouth moved out of the shallow sea covered by several islands and faced the South China Sea directly. Therefore, the mouth bay became a siltation center in the estuarine region and expanded outwards, gradually evolving a geomorphic pattern with three shallow shoals and two distributary branches; a west branch as the main branch accompanied by a small east branch. Over the past decade, high-intensity sand dredging activities in the mouth bar have led to a considerable deepening of the water depth and a significant refinement of bed sediments, forming a discharge pattern of a wide and shallow channel flowing into the sea. Therefore, the evolutionary characteristics of the mouth bar have become abnormal in recent years, so additional field bathymetric data and hydrological data are required for further research regarding the subsequent evolution of the mouth bar, against the background of a significant reduction of sediment discharge and high-intensity human activities.


Sedimentology ◽  
2021 ◽  
Author(s):  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Thi Kim Oanh Ta ◽  
Van Lap Nguyen ◽  
Andrew D. La Croix ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Florin Zăinescu ◽  
Edward Anthony ◽  
Alfred Vespremeanu-Stroe

At river mouths, fluvial jets and longshore currents (LSCs) generated by waves interact hydrodynamically. This idealized numerical modeling study simulates a large number of hydro-morphodynamic conditions (650) to explore the emergent hydrodynamics determined by different mouth bar volumes and geometries, river discharge, wave heights, and directions and their potential stress on river-mouth development. We find that in the absence of a river-mouth bar (RMB), interactions are driven by momentum balances, expressed either as the balance of wave momentum flux (Mw) and jet momentum flux (Mj), or the balance of river jet discharge (QJet) and longshore current discharge (QLSC). When a RMB is present, the topography modifies the structure of the jet by spreading it, and we quantify this mechanism through the lateral jet transfer rate (LJT). Secondly, topography generates complex longshore wave-driven circulation as a result of the protruding shoreface which serves as a platform on which counter LSCs develop. The balance in QJet/QLSC may be used as an indication of the type of circulation. High and oblique waves favor longshore circulation and RMB bypass, whereas low waves and normal-to-coast angles generate diverging LSCs on the mouth bar crest which interrupts the longshore circulation. A quantification of the dynamic diversion is proposed in the form of the non-dimensional Dynamic diversion index (DyD), which scales with the product of Mj and Mw, and can account for the absolute strength of hydrodynamic interactions occurring at river mouths. RMB morphology can affect DyD in multiple ways by strengthening or by weakening the interactions. The DyD effect seems to increase with increasing RMB size, indicating that the RMB scale regulates the interplay of the wave-driven circulation and the river jet which further controls the adjacent topography changes.


2021 ◽  
Author(s):  
Matthew Watkinson ◽  
Grant Cole ◽  
Rhodri Jerrett

<p>Improved understanding of delta mouth bar morphodynamics, and the resulting stratigraphic architectures, is important for predicting the loci of deposition of different sediment fractions, coastal geomorphic change and heterogeneity in mouth bar reservoirs. Facies and architectural analysis of exceptionally well-exposed shallow water (ca. 5 m depth) mouth bars and associated distributaries, from the Xert Formation (Lower Cretaceous), of the Maestrat Basin (east-central Spain), reveal that they grew via a succession of repeated autogenic cycles. The formation is part of a mixed clastic-carbonate succession deposited during a time of active faulting and incipient salt tectonism, but in an area away from their direct influence and where wave and tidal reworking were minimal.</p><p>An initial mouth bar accretion element forms after avulsion of a distributary into shallow standing water. Turbulent expansion of the fluvial jet and high bed friction results in rapid flow deceleration, and deposition of sediment in an aggradational to expansional bar-form. Vertical bar growth causes flattening and acceleration of the jet. The accelerated flow scours channels on the bar top, which focuses further expansion of the mouth bar at individual loci where the channels break through the front of the mouth bar. Here, new mouth bar accretion elements form, downlapping and onlapping against a readily recognizable surface of mouth bar reorganization. Vertical growth of the new mouth bar accretion elements causes flattening and re-acceleration of the jet, leading to channelization, and initiation of the next generation of mouth bar accretion elements. Thus the mouth bar grows, until bed-friction effects cause backwater deceleration and superelevation of flow in the feeding distributary. Within-channel sedimentation, choking and upstream avulsion of the feeding channel, results in mouth bar abandonment. In this study, mouth bars are formed of at least two to three accretion elements, before abandonment happened. The results of this study contrast with the notion that mouth bars form by simple vertical aggradation and radial expansion. However, the architecture and facies distributions of shallow water mouth bars are a predictable product of intrinsic processes that operate to deposit them.</p>


2021 ◽  
Author(s):  
Anna van Yperen ◽  
Miquel Poyatos-Moré ◽  
John Holbrook ◽  
Ivar Midtkandal

<p>Mouth bars are fundamental architectural elements of deltaic successions. Understanding their internal architecture and complex interaction with coastal processes (fluvial-, tide- and wave-dominated) is therefore paramount to the interpretation of ancient deltaic successions. This is particularly challenging in low-accommodation systems because they are commonly characterized by a thin, condensed and top-truncated expression. In this study we analyze the exhumed Cenomanian Mesa Rica Sandstone (Dakota Group, Western Interior Seaway, USA), which encompasses a fluvio-deltaic system along a ~450 km depositional dip-parallel profile. The study targets the proximal deltaic expression of the system, using 22 sedimentary logs (total of 390 m) spatially correlated within a ~25 km2 study area at the Tucumcari Basin margin. Analysis of facies distribution, depositional architecture and stratigraphic surfaces mapping reveals a 6–10-m-thick, sharp-based and sand-prone deltaic package, comprising several laterally-extensive (>1.4 km width) mouth bars. Within those, we distinguish four different along-strike sub-environments based on differences in grain size, sedimentary structures, bed thicknesses, and bioturbation indices; these are mouth bar axis, off-axis, lateral fringe to distal lateral fringe deposits, and overall reflect waning depositional energy with increasing distality from the distributary channel mouth. The interpreted mouth-bar components also show internal variability in dominant process regime, with overall river dominance but local preservation of tide influence in the lateral fringe and distal fringe environments. However, mouth-bar deposits amalgamate to form an extensive sand-rich sheet body throughout the study area, in which interflood mudstone to very-fine grained sandstone beds are nearly absent. This indicates a low accommodation/supply (A/S) setting, which promoted recurrent channel avulsion/bifurcation and thus reworking of mouth-bar fringe and distal-fringe sediments, where background coastal processes tend to be better recorded.</p><p>Trends in along-strike changes in sedimentary characteristics from axial to lateral environments are also recognized in other wave- and river-dominated deltaic settings as well, where axial components consist of higher energy facies associations resulting from high-density currents, whereas heterolithics become dominant towards the fringes, where there is an alternation of low- and high-density deposits combined with an increased recording of finer-grained facies associations. Complemented with our study, this suggests that internal hierarchy of mouth bars is evident and observed regardless of dominant coastal processes. Consequently, subdivision of mouth bars into different components can reduce complexity of models deriving from a myriad of facies subdivisions, and guide prediction of facies changes and sand distribution in future studies of proximal deltaic settings. Finally, results of this study evidence internal process-regime variability within mouth-bar components. This cautions against relying solely on the preserved deposits at one given location in a system to infer dominant and subordinate coastal processes (e.g. tidal indicators), with a consequent risk of underestimating the true mixed-influence nature of low-accommodation deltaic settings.</p>


2021 ◽  
Author(s):  
Dongxue Li

<p>Coastal wetlands play an important role for both human society and coastal ecosystems. The intradelta lobe avulsion, which causes channel shift inside the delta lobe, can create new coastal wetlands and benefit wetland restoration. Previous studies suggest that intradelta lobe avulsion is controlled by the river mouth bar stagnation that results in back filling of the river channel, which further increases the overbank flow at the natural levees and eventually leads to the avulsion. However, the natural levees are commonly colonized by vegetation, and its relevant effects on the avulsion at the levees are still elusive. In this study, we aim to quantify the effects of vegetation on the occurrence of intradelta lobe avulsion at the natural levees through numerical experiments using Delft3D. Numerical simulations of vegetated and non-vegetated scenarios were conducted with different combination of vegetation height and density, river discharge, suspended-sediment concentration and Chezy coefficient. The model results show that the existence of vegetation results in shorter levee length and river mouth bar distance relative to those of non-vegetated scenarios. The levee length and the river mouth bar distance are primarily dictated by the Chezy coefficient and the representative Chezy coefficient for non-vegetated and vegetated scenarios, respectively. In addition, the time scales of river mouth bar stagnation and the intradelta lobe avulsion tend to be shorter for vegetated scenarios, which is presumably due to the shorter river mouth bar distance that leads to a smaller accommodation space for back filling of the river channel. Our findings have important implications for predicting the future avulsion of intradelta lobe and improving the management of deltas and estuaries.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Jinkai Wang ◽  
Jialin Fu ◽  
Jieming Wang ◽  
Kai Zhao ◽  
Jinliang Zhang ◽  
...  

Abstract:The Nenjiang Formation, south of Songliao Basin, has many hydrocarbon bearing units, but currently the understanding of the distribution of viable reservoir sandstones is too limited to support a development strategy. Therefore, a detailed study on the sedimentary microfacies and reservoir properties has been completed in order to reduce uncertainty and improve subsurface predictions. Nine lithofacies and five lithofacies associations were identified supporting the development of a sedimentary model of a river-dominated delta front setting, which could be divided into four sedimentary environments: subaqueous distributary channel-fill, mouth bar, sand sheet, and interdistributary bay. The distribution sandbodies extend to the south in a tongue-like form, and they thin and pinch out. Finally, the influence of sedimentary process on properties was assessed by establishing the correlation between microfacies and reservoir physical parameters, such as porosity, permeability, pore radius, throat radius, and clay minerals. It is revealed that the correspondence between reservoir physical properties and microfacies types is strong; the physical properties of the subaqueous distributary channel and mouth bar are the best.


2021 ◽  
Vol 13 (3) ◽  
pp. 412
Author(s):  
Kana Hashimoto ◽  
Takenori Shimozono ◽  
Yoshinao Matsuba ◽  
Takumi Okabe

Monitoring the morphological evolution of a river-mouth bar is of both practical and scientific importance. A large amount of sediment is transported from a river to surrounding littoral cells via a deltaic bar after an extreme weather event. However, it is often not feasible to capture drastic morphological changes in the short term with conventional bathymetric surveys. This paper presents a depth-inversion method based on unmanned aerial vehicle technology to estimate two-dimensional bathymetry from video-sensed swell propagation. The estimation algorithm is tested over four cases with varying wave and bathymetric conditions and is validated with transect survey data. The test results suggest that the method can estimate deltaic-bar topography in front of a river mouth with a root-mean-square error of <0.5 m. The applicable range is limited by wave breaking in the inner bar and up to a depth of ~8 m, where swell intensity signals become ambiguous. A comparison of the different cases shows that the method works better under calm weather conditions with dominant swells propagating from non-local sources. Significant morphological changes of a river-mouth bar due to a powerful typhoon are successfully detected by observations right before and after the event.


Sign in / Sign up

Export Citation Format

Share Document