Immunotherapy of Melanoma Targeting Human High Molecular Weight Melanoma-Associated Antigen: Potential Role of Nonimmunological Mechanisms

2004 ◽  
Vol 1028 (1) ◽  
pp. 340-350 ◽  
Author(s):  
C.-C. CHANG
2007 ◽  
Vol 45 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Akiyoshi Sakai ◽  
Sumio Akifusa ◽  
Naoki Itano ◽  
Koji Kimata ◽  
Taro Kawamura ◽  
...  

2000 ◽  
Vol 275 (33) ◽  
pp. 25139-25145 ◽  
Author(s):  
David H. Ho ◽  
Karen Badellino ◽  
Frank A. Baglia ◽  
Mao-Fu Sun ◽  
Ming-Ming Zhao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1077
Author(s):  
Romisuhani Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Fakhryna Hannanee Ahmad Zaidi ◽  
...  

The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.


2021 ◽  
Vol 118 (48) ◽  
pp. e2112107118
Author(s):  
Eduardo M. Bruch ◽  
Pierre Vilela ◽  
Lu Yang ◽  
Alexandra Boyko ◽  
Norik Lexa-Sapart ◽  
...  

α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high–molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.


2020 ◽  
Vol 27 ◽  
pp. 2169-2173
Author(s):  
B. Suresha ◽  
B. Harshavardhan ◽  
Ashwij M. Rao ◽  
U.R. Koushik ◽  
R. Hemanth

2005 ◽  
Vol 16 (10) ◽  
pp. 4745-4754 ◽  
Author(s):  
Daniel M. Meyer ◽  
Pascal Crottet ◽  
Bohumil Maco ◽  
Elena Degtyar ◽  
Dan Cassel ◽  
...  

The mechanism of AP-1/clathrin coat formation was analyzed using purified adaptor proteins and synthetic liposomes presenting tyrosine sorting signals. AP-1 adaptors recruited in the presence of Arf1·GTP and sorting signals were found to oligomerize to high-molecular-weight complexes even in the absence of clathrin. The appendage domains of the AP-1 adaptins were not required for oligomerization. On GTP hydrolysis induced by the GTPase-activating protein ArfGAP1, the complexes were disassembled and AP-1 dissociated from the membrane. AP-1 stimulated ArfGAP1 activity, suggesting a role of AP-1 in the regulation of the Arf1 “GTPase timer.” In the presence of cytosol, AP-1 could be recruited to liposomes without sorting signals, consistent with the existence of docking factors in the cytosol. Under these conditions, however, AP-1 remained monomeric, and recruitment in the presence of GTP was short-lived. Sorting signals allowed stable recruitment and oligomerization also in the presence of cytosol. These results suggest a mechanism whereby initial assembly of AP-1 with Arf1·GTP and ArfGAP1 on the membrane stimulates Arf1 GTPase activity, whereas interaction with cargo induces oligomerization and reduces the rate of GTP hydrolysis, thus contributing to efficient cargo sorting.


Sign in / Sign up

Export Citation Format

Share Document