scholarly journals Learnings From Precision Clinical Trial Matching for Oncology Patients Who Received NGS Testing

2021 ◽  
pp. 231-238
Author(s):  
Neha M. Jain ◽  
Alison Culley ◽  
Christine M. Micheel ◽  
Travis J. Osterman ◽  
Mia A. Levy

PURPOSE Tumor next-generation sequencing reports typically generate trial recommendations for patients based on their diagnosis and genomic profile. However, these require additional refinement and prescreening, which can add to physician burden. We wanted to use human prescreening efforts to efficiently refine these trial options and also elucidate the high-value parameters that have a major impact on efficient trial matching. METHODS Clinical trial recommendations were generated based on diagnosis and biomarker criteria using an informatics platform and were further refined by manual prescreening. The refined results were then compared with the initial trial recommendations and the reasons for false-positive matches were evaluated. RESULTS Manual prescreening significantly reduced the number of false positives from the informatics generated trial recommendations, as expected. We found that trial-specific criteria, especially recruiting status for individual trial arms, were a high value parameter and led to the largest number of automated false-positive matches. CONCLUSION Reflex clinical trial matching approaches that refine trial recommendations based on the clinical details as well as trial-specific criteria have the potential to help alleviate physician burden for selecting the most appropriate trial for their patient. Investing in publicly available resources that capture the recruiting status of a trial at the cohort or arm level would, therefore, allow us to make meaningful contributions to increase the clinical trial enrollments by eliminating false positives.

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0002
Author(s):  
Yoonjung Choi ◽  
Irvin Oh

Category: Other Introduction/Purpose: Foot infections are often polymicrobial with diverse microbiomes. Accurate identification of the main pathogen in diabetic foot ulcer (DFU) remain challenging due to contamination or negative cultures often leading to ineffective post-surgical antibiotic treatment. Application of molecular diagnostics, such as next generation sequencing (NGS) has been explored as an alternative to standard culture in orthopaedic infections. NGS is highly sensitive and detects an entire bacterial genome along with pharmacologic resistant genes in a given sample. We sought to investigate the potential use of NGS for accurate diagnosis and quantification of various species in infected DFU. We hypothesize that NGS will provide a more accurate means of diagnosing and profiling microorganisms in infected DFU compared to the standard culture method. Methods: We investigated 30 infected DFU patients who underwent surgical treatment by a single academic orthopaedic surgeon from October 2018 to September 2019. The average age of the patient was 60.4 (range 33-82) years-old. Surgical procedures performed were irrigation and debridement (12), toe or ray amputation (13), calcanectomies (4), and below-knee amputation (1). Infected bone specimens were obtained intraoperatively and processed for standard culture and NGS. Quantitative PCR was performed to determine the bacterial burden present in the sample. DNA was amplified by PCR from a highly conserved region of the rRNA gene in the bacteria (16S rRNA). Once a high level of DNA was generated and determined, it was compared against NIH GenBank database. Concordance between the standard culture and NGS was assessed. Results: In 28 of 29 patients, pathogens were identified by both NGS and culture, with complete consistency of organisms in 13 cases (concordance rate: 43.3%). NGS provided relative quantitative measures and the presence of antibiotic resistant genes for each pathogen. In NGS, Anaerococcus species (79.3%) was the most common organism, followed by Streptococcus species (44.8%), Prevotella species (44.8%), Finegoldia magna (44.8%). In culture, S. aureus (58.6%) was the most common, followed by Streptococcus species (34.5%), coagulase-negative Staphylococci (24.1%), Corynebacterium species (20.7%). On average, NGS revealed 5.1 (1-11) number of pathogens, whereas standard culture revealed 2.6 (1-6) pathogens in a given sample. NGS identified 2 cases with false positive standard culture and detected antibiotic resistant organisms in 15 specimens. Conclusion: NGS is an emerging method of microbial identification in orthopedic infection. It is particularly helpful in profiling diverse microbes in polymicrobial infected DFU. It can identify major pathogens and may correct false positive or false negative culture. NGS may allow a faster invitation of postoperative targeted antibiotic therapy. [Table: see text]


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Mary Jane Lim-Fat ◽  
Gilbert Youssef ◽  
Mehdi Touat ◽  
Bryan Iorgulescu ◽  
Eleanor Woodward ◽  
...  

Abstract BACKGROUND Comprehensive next generation sequencing (NGS) is available through many academic institutions and commercial entities, and is incorporated in practice guidelines for glioblastoma (GBM). We retrospective evaluated the practice patterns and utility of incorporating NGS data into routine care of GBM patients at a clinical trials-focused academic center. METHODS We identified 1,011 consecutive adult patients with histologically confirmed GBM with OncoPanel testing, a targeted exome NGS platform of 447 cancer-associated genes at Dana Farber Cancer Institute (DFCI), from 2013-2019. We selected and retrospectively reviewed clinical records of all IDH-wildtype GBM patients treated at DFCI. RESULTS We identified 557 GBM IDH-wildtype patients, of which 227 were male (40.7%). OncoPanel testing revealed 833 single nucleotide variants and indels in 44 therapeutically relevant genes (Tier 1 or 2 mutations) including PIK3CA (n=51), BRAF (n=9), FGFR1 (n=8), MSH2 (n=4), MSH6 (n=2) and MLH1 (n=1). Copy number analysis revealed 509 alterations in 18 therapeutically relevant genes including EGFR amplification (n= 186), PDGFRA amplification (N=39) and CDKN2A/2B homozygous loss (N=223). Median overall survival was 17.5 months for the whole cohort. Seventy-four therapeutic clinical trials accrued 144 patients in the upfront setting (25.9%) and 203 patients (36.4%) at recurrence. Altogether, NGS data for 107 patients (19.2%) were utilized for clinical trial enrollment or targeted therapy indications. High mutational burden (>17mutations/Mb) was identified in 11/464 samples (2.4%); of whom 3/11 received immune checkpoint blockade. Four patients received compassionate use therapy targeting EGFRvIII (rindopepimut, n=2), CKD4/6 (abemaciclib, n=1) and BRAFV600E (dabrafenib/trametinib, n=1). CONCLUSION While NGS has greatly improved diagnosis and molecular classification, we highlight that NGS remains underutilized in selecting therapy in GBM, even in a setting where clinical trials and off-label therapies are relatively accessible. Continued efforts to develop better targeted therapies and efficient clinical trial design are required to maximize the potential benefits of genomically-stratified data.


2015 ◽  
Vol 14s2 ◽  
pp. CIN.S17282 ◽  
Author(s):  
Yingdong Zhao ◽  
Eric C. Polley ◽  
Ming-Chung Li ◽  
Chih-Jian Lih ◽  
Alida Palmisano ◽  
...  

We have developed an informatics system, GeneMed, for the National Cancer Institute (NCI) molecular profiling-based assignment of cancer therapy (MPACT) clinical trial (NCT01827384) being conducted in the National Institutes of Health (NIH) Clinical Center. This trial is one of the first to use a randomized design to examine whether assigning treatment based on genomic tumor screening can improve the rate and duration of response in patients with advanced solid tumors. An analytically validated next-generation sequencing (NGS) assay is applied to DNA from patients’ tumors to identify mutations in a panel of genes that are thought likely to affect the utility of targeted therapies available for use in the clinical trial. The patients are randomized to a treatment selected to target a somatic mutation in the tumor or with a control treatment. The GeneMed system streamlines the workflow of the clinical trial and serves as a communications hub among the sequencing lab, the treatment selection team, and clinical personnel. It automates the annotation of the genomic variants identified by sequencing, predicts the functional impact of mutations, identifies the actionable mutations, and facilitates quality control by the molecular characterization lab in the review of variants. The GeneMed system collects baseline information about the patients from the clinic team to determine eligibility for the panel of drugs available. The system performs randomized treatment assignments under the oversight of a supervising treatment selection team and generates a patient report containing detected genomic alterations. NCI is planning to expand the MPACT trial to multiple cancer centers soon. In summary, the GeneMed system has been proven to be an efficient and successful informatics hub for coordinating the reliable application of NGS to precision medicine studies.


2016 ◽  
Vol 12 (4) ◽  
pp. e396-e404 ◽  
Author(s):  
Kalyan C. Mantripragada ◽  
Adam J. Olszewski ◽  
Andrew Schumacher ◽  
Kimberly Perez ◽  
Ariel Birnbaum ◽  
...  

Purpose: Successful clinical trial accrual targeting uncommon genomic alterations will require broad national participation from both National Cancer Institute (NCI)–designated comprehensive cancer centers and community cancer programs. This report describes the initial experience with clinical trial accrual after next-generation sequencing (NGS) from three affiliated non–NCI-designated cancer programs. Materials and Methods: Clinical trial participation was reviewed after enrollment of the first 200 patients undergoing comprehensive genomic profiling by NGS as part of an institutional intuitional review board–approved protocol at three affiliated hospitals in Rhode Island and was compared with published experience from NCI-designated cancer centers. Results: Patient characteristics included a median age of 64 years, a median of two lines of prior therapy, and a predominance of GI carcinomas (58%). One hundred sixty-four of 200 patients (82%) had adequate tumor for NGS, 95% had genomic alterations identified, and 100% had variants of unknown significance. Fifteen of 164 patients (9.2%) enrolled in genotype-directed clinical trials, and three patients (1.8%) received commercially available targeted agents off clinical trials. The reasons for nonreceipt of NGS-directed therapy were no locally available matching trial (48.6%), ineligibility (33.6%) because of comorbidities or interim clinical deterioration, physician's choice of a different therapy (6.8%), or stable disease (11%). Conclusion: This experience demonstrates that a program enrolling patients in specific targeted agent clinical trials after NGS can be implemented successfully outside of the NCI-designated cancer program network, with comparable accrual rates. This is important because targetable genes have rare mutation rates and clinical trial accrual after NGS is low.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 11596-11596
Author(s):  
Ivana GABRIELA Sullivan ◽  
Ludovic Lacroix ◽  
Julien Adam ◽  
Aurelie Honore ◽  
Nicolas Dorvault ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3073-3073
Author(s):  
Marc Ryan Matrana ◽  
Scott A. Tomlins ◽  
Kat Kwiatkowski ◽  
Khalis Mitchell ◽  
Jennifer Marie Suga ◽  
...  

3073 Background: Widespread integration of systematized next generation sequencing (NGS)-based precision oncology is hindered by numerous barriers. Hence, we developed the Strata trial (NCT03061305), a screening protocol to determine the impact of scaled precision oncology. Methods: We implemented no-cost NGS on formalin fixed paraffin embedded (FFPE) clinical samples for all patients with advanced tumors, a common portfolio of partnered therapeutic clinical trials, and robust infrastructure development across the Strata Precision Oncology Network. Results: Across the network of 17 centers, specimens from 8673/9222 (94%) patients were successfully tested in the Strata CLIA/CAP/NCI-MATCH accredited laboratory using comprehensive amplicon-based DNA and RNA NGS. Patients were tested with one of three StrataNGS test versions; the most recent panel assesses all classes of actionable alterations (mutations, copy number alterations, gene fusions, microsatellite instability, tumor mutation burden and PD-L1 expression). Median surface area of received FFPE tumor samples was 25mm2 (interquartile range 9-95mm2), and the median turnaround time from sample receipt to report was 6 business days. 2577 (27.9%) patients had highly actionable alterations, defined as alterations associated with within-cancer type FDA approved or NCCN guideline recommended therapies (1072 patients), NCI-MATCH trial arms (1467 patients), Strata-partnered therapeutic trials (327 patients), or specific alteration-matched FDA approved therapies in patients with cancers of unknown primary (71 patients). Of the 1467 patients matched to an NCI-MATCH trial arm, 15 enrolled. Of the 327 patients matched to one of nine Strata-partnered clinical trials, 77 (24%) were screen failures, while 250 (76%) have either enrolled or are being actively followed for enrollment upon progression. Conclusions: Through streamlined consent methods, electronic medical record queries, and high throughput laboratory testing at no cost to patients, we demonstrate that scaled precision oncology is feasible across a diverse network of healthcare systems when paired with access to relevant clinical trials. Clinical trial information: NCT03061305.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Junbo Duan ◽  
Han Liu ◽  
Lanling Zhao ◽  
Xiguo Yuan ◽  
Yu-Ping Wang ◽  
...  

Next generation sequencing is an emerging technology that has been widely used in the detection of genomic variants. However, since its depth of coverage, a main signature used for variant calling, is affected greatly by biases such as GC content and mappability, some callings are false positives. In this study, we utilized paired-end read mapping, another signature that is not affected by the aforementioned biases, to detect false-positive deletions in the database of genomic variants. We first identified 1923 suspicious variants that may be false positives and then conducted validation studies on each suspicious variant, which detected 583 false-positive deletions. Finally we analysed the distribution of these false positives by chromosome, sample, and size. Hopefully, incorrect documentation and annotations in downstream studies can be avoided by correcting these false positives in public repositories.


Sign in / Sign up

Export Citation Format

Share Document