Impact of deletion 13q14 detected by fluorescence in situ hybridization on outcome after dose-reduced allogeneic stem transplantation in patients with multiple myeloma

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 6536-6536
Author(s):  
N. Kröger ◽  
G. Schilling ◽  
P. Liebisch ◽  
H. Einsele ◽  
A. Nagler ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4696-4700 ◽  
Author(s):  
Nikhil C. Munshi ◽  
Kenneth C. Anderson ◽  
P. Leif Bergsagel ◽  
John Shaughnessy ◽  
Antonio Palumbo ◽  
...  

Abstract A panel of members of the 2009 International Myeloma Workshop developed guidelines for risk stratification in multiple myeloma. The purpose of risk stratification is not to decide time of therapy but to prognosticate. There is general consensus that risk stratification is applicable to newly diagnosed patients; however, some genetic abnormalities characteristic of poor outcome at diagnosis may suggest poor outcome if only detected at the time of relapse. Thus, in good-risk patients, it is necessary to evaluate for high-risk features at relapse. Although detection of any cytogenetic abnormality is considered to suggest higher-risk disease, the specific abnormalities considered as poor risk are cytogenetically detected chromosomal 13 or 13q deletion, t(4;14) and del17p, and detection by fluorescence in situ hybridization of t(4;14), t(14;16), and del17p. Detection of 13q deletion by fluorescence in situ hybridization only, in absence of other abnormalities, is not considered a high-risk feature. High serum β2-microglobulin level and International Staging System stages II and III, incorporating high β2-microglobulin and low albumin, are considered to predict higher risk disease. There was a consensus that the high-risk features will change in the future, with introduction of other new agents or possibly new combinations.


2004 ◽  
Vol 148 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Elisabet Lloveras ◽  
Isabel Granada ◽  
Lurdes Zamora ◽  
Blanca Espinet ◽  
Lourdes Florensa ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1120-1126 ◽  
Author(s):  
Katja Specht ◽  
Eugenia Haralambieva ◽  
Karin Bink ◽  
Marcus Kremer ◽  
Sonja Mandl-Weber ◽  
...  

AbstractThe t(11;14)(q13;q32) is the most common translocation in multiple myeloma (MM), resulting in up-regulation of cyclin D1. We used a segregation fluorescence in situ hybridization (FISH) assay to detect t(11;14) breakpoints in primary MM cases and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) to quantify cyclin D1 and MYEOV (myeloma overexpressed) expression, another putative oncogene located on chromosome 11q13. High levels of cyclin D1 mRNA (cyclin D1/TBP [TATA box binding protein] ratio > 95) were found exclusively in the presence of a t(11;14) translocation (11/48 cases; P < .00001). In addition, a subgroup of MM cases (15/48) with intermediate to low cyclin D1 mRNA (cyclin D1/TBP ratio between 2.3 and 20) was identified. FISH analysis ruled out a t(11; 14) translocation and 11q13 amplification in these cases; however, in 13 of 15 patients a chromosome 11 polysomy was demonstrated (P < .0001). These results indicate an effect of gene dosage as an alternative mechanism of cyclin D1 deregulation in MM. The absence of chromosome 11 abnormalities in 2 of 15 patients with intermediate cyclin D1 expression supports that there are presumably other mechanism(s) of cyclin D1 deregulation in MM patients. Our data indicate that deregulation of MYEOV is not favored in MM and further strengthens the role of cyclin D1 overexpression in lymphoid malignancies with a t(11;14)(q13;q32) translocation. (Blood. 2004;104:1120-1126)


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e19558-e19558
Author(s):  
S. Park ◽  
C. Kim ◽  
H. Kim ◽  
D. Hong ◽  
S. Lee ◽  
...  

e19558 Background: Multiple myeloma is characterized by the accumulation of malignant plasma cells within the bone marrow and regarded as incurable, but remissions may be induced with steroids, chemotherapy, thalidomide and stem cell transplants. The clinical heterogeneity of myeloma is dictated by the cytogenetic aberrations present in the clonal plasma cells. Fluorescence in situ hybridization (FISH) overcomes the limitations of standard cytogenetics and allows for the detection of numerical and structural chromosomal abnormalities in both metaphase spreads and interphase nuclei. Methods: We evaluated the chromosome abnormalities in 34 MM patients using conventional cytogenetics and interphase FISH with 6 probes such as IGH/CCND1, IGH/FGFR3, IGH/MAF, DS13S319/LAMP1, IGH/BAP, and p53/CEP17. Results: Cytogenetic abnormalities were found in 24 (70.6%) of the 28 MM patients. 10 (35.7%) patients had abnormal metaphases by conventional cytogenetics. Interphase FISH results were abnormal in 21 (61.8%) patients and 11 (52.3%) patients had abnormal interphase FISH but normal metaphases. The evidence of the loss of D13S319 with or without loss of LAMP1 was found in 6 (21.4%) patients, and loss of p53±CEP17 for 2 patients, IGH-BAP for 9 (26.5%) patients, IGH/FGFR3 for 2 patients, and IGH/CCND1 for 7 (20.6%) patients, respectively. However, there were none positive for IGH/MAF. Chromosome 13 abnormalities and IGH rearrangement is correlated with poor clinical outcome. Conclusions: Interphase FISH can provide useful information to evaluate the presence of prognostic chromosome abnormalities in addition to metaphase cytogenetics. And it should be used in the routine evaluation of multiple myeloma. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document