DNA methylation signature to identify treatment response in triple negative breast cancer.

2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 1079-1079
Author(s):  
Begona Pineda ◽  
Angel Diaz-Lagares ◽  
Jose Alejandro Perez-Fidalgo ◽  
Elisa Alonso ◽  
Juan Sandoval ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A24-A24
Author(s):  
Georges Azzi ◽  
Shifra Krinshpun ◽  
Antony Tin ◽  
Allyson Malashevich ◽  
Meenakshi Malhotra ◽  
...  

BackgroundTriple negative breast cancer (TNBC) is an aggressive form of breast cancer that is most difficult to treat due to the absence of hormone/growth factor receptors.1 2 Metastatic TNBC (mTNBC) is particularly challenging, given the limited efficacy and duration of response to chemotherapy.3 The repertoire of therapeutic options for mTNBC patients continues to increase with chemotherapeutic and immuno oncology based treatments and now includes sacituzumab govitecan, a novel antibody-chemotherapy conjugate.4MethodsHere we present a case study of a 40-year-old female who on biopsy of her left breast mass was diagnosed with TNBC. The patient underwent neoadjuvant chemotherapy with weekly administration of paclitaxel and carboplatin followed by dose-dense doxorubicin with cyclophosphamide. Following one-month, the patient underwent bilateral mastectomy, showing pathological staging ypT2 pN0. The patient underwent periodic radiological imaging along with the assessment of circulating tumor DNA in blood using a personalized and tumor-informed multiplex PCR, next-generation sequencing assay (Signatera bespoke, mPCR NGS assay) to identify the minimal residual disease (MRD) and treatment response.ResultsAfter surgery, MRD assessment revealed ctDNA positive status (0.41 MTM/mL) prompting PET/CT scan that revealed liver metastasis. Continued ctDNA monitoring showed continuous increase in ctDNA concentration (287.09 MTM/mL). Separate analyses indicated MSI-high and PD-L1 positive tumor status, leading to the initiation of the first line of therapy (nab-paclitaxel and Atezolizumab), which resulted in ctDNA decline (39.62 MTM/ml). Weekly ctDNA monitoring noted a rapid increase a month later (178 MTM/ml to 833.69 MTM/ml) within a 2-week interval, which corresponded to disease progression on imaging. Given non-responsiveness with the first-line therapy, the patient was initiated with sacituzumab govitecan. Following this, a rapid decline in the ctDNA level was observed within a week (364.07 MTM/mL) with a downward trend to 73.03 MTM/ml by two weeks. An interval PET/CT scan showed a mixed response. Continued monitoring of ctDNA demonstrated ctDNA levels <5MTM/mL for a period of two months before serially rising again (to 89.27 MTM/ml). PET-CT ordered in response to increasing ctDNA levels confirmed progression involving hepatic and lung lesions. A new line of therapy with nivolumab and ipilimumab was subsequently initiated.ConclusionsSerial monitoring of ctDNA enables early detection of therapy resistance and provides a rationale for treatment change/optimization/discontinuation as compared to periodic imaging that is currently the standard of care. The ease and convenience of using ctDNA-based testing as frequently as every week clearly identified earlier non-responsiveness to IO and also identified earlier acquired resistance to antibody-drug conjugate, enabling a prompt switch to alternative therapy.Ethics ApprovalN/AConsentN/AReferencesAnders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology (Williston Park). 2008;22(11):1233–1243.Mehanna J, Haddad FG, Eid R, Lambertini M, Kourie HR. Triple-negative breast cancer: current perspective on the evolving therapeutic landscape. Int J Womens Health2019;11:431–437. Published 2019 Jul 31. doi:10.2147/IJWH.S178349Treatment of Triple-negative Breast Cancer. American Cancer Society Website. Updated 2020. Accessed August 10, 2020. https://www.cancer.org/cancer/breast-cancer/treatment/treatment-of-triple-negative.htmlBardia A, Mayer IA, Vahdat LT, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 2019;380(8):741–751. doi:10.1056/NEJMoa1814213


Breast Care ◽  
2020 ◽  
pp. 1-9
Author(s):  
Rudolf Napieralski ◽  
Gabriele Schricker ◽  
Gert Auer ◽  
Michaela Aubele ◽  
Jonathan Perkins ◽  
...  

<b><i>Background:</i></b> PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. <b><i>Material and Methods:</i></b> The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. <b><i>Results:</i></b> The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; <i>p</i> = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR &#x3e;2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; <i>p</i> = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; <i>p</i> = 0.014). <b><i>Conclusion:</i></b> In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.


2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Tuoen Liu ◽  
William Kohler ◽  
Benjamin Wolff ◽  
Christopher Butler ◽  
Gabor Szalai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document