Assessing the potential of immunotherapy in treating chronic lymphocytic leukemia through meta-analysis.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7531-7531
Author(s):  
Jihad Aljabban ◽  
David Allen ◽  
Sean McDermott ◽  
Ross Wanner ◽  
Hussam Salhi ◽  
...  

7531 Background: Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults and has a heterogenous presentation. CLL is known to shape the immune response to survive. Studying these processes will help gauge the potential success of immunotherapy and point to therapeutic targets. Methods: We used our Search, Tag, Analyze, Resource platform to meta-analyze patient samples from Gene Expression Omnibus. We tagged peripheral B cells from 741 CLL patients and peripheral B cell samples from 150 healthy donors as a control. We also tagged and compared B cell samples from 84 CLL progressors to 91 patients with stable CLL. Lastly, we tagged peripheral T cells from 70 CLL patients and T cells from 35 healthy donors as a control. We then analyzed the signature in Ingenuity Pathway Analysis. Results: Analysis of CLL cell samples identified T cell exhaustion signaling as our top canonical pathway. IL2, IL5, and TGFB1 were top upstream regulators. We found upregulation of PDL1, CTLA4, and Lag3, known markers for immunosuppressive B cells. FMOD, which sequesters TGFB, was also upregulated along with molecules that modulate BCR signaling such as MIR155HG. EBF1, required for B cell differentiation, and the co-stimulatory molecule CD80 were downregulated. Analysis of progressing CLL versus stable CLL highlighted metabolic changes. S-adenosyl-L-methionine biosynthesis, methionine degradation to homocysteine, cysteine biosynthesis, and acetate conversion to acetyl-CoA were top canonical pathways. No difference was seen in PDL1, CTLA4, and Lag3 expression but EBF1 was upregulated. Lastly, our T cell analysis demonstrated NFAT in regulation of the immune response as the top canonical pathway. Conclusions: Our results reinforce the promise immunotherapy can have in treatment of CLL and suggests more aggressive cases of CLL are a function of metabolic changes as opposed to differences in immune escape. We also suggest a role of NFAT in T cell exhaustion in the context of CLL.

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 143-143
Author(s):  
Zhi-Zhang Yang ◽  
Deanna Grote ◽  
Steven Ziesmer ◽  
Toshiro Niki ◽  
Mitsuomi Hirashima ◽  
...  

Abstract Abstract 143 IL-12 induces IFN-g production and contributes to anti-tumor immunity. However, administration of IL-12 in cancer patients has resulted in a limited clinical benefit. In follicular B-cell lymphoma (FL), a clinical trial of IL-12 in combination with rituximab showed a lower response rate in patients treated with the combination than in patients treated with rituximab alone (Clin Cancer Res 2006), suggesting that, in contrast to the observations in vitro or in vivo in mice, IL-12 actually plays a detrimental role in FL patients. Recently, a type of immune response, termed “ T cell exhaustion” describing a condition in which T cells exhibit reduced differentiation, proliferation, and effector function, has been shown to impair anti-tumor immunity and result in disease progression. TIM-3, a family member of T-cell immunoglobulin and mucin domian-containing proteins, inhibits TH1-mediated immune response and promotes immunological tolerance. A recent study has suggested that TIM-3 may play an important role in mediating T cell exhaustion. However, the biological and clinical relevance of TIM-3 in cancers remains completely unknown. In this study, we determined whether T cell exhaustion exists in the tumor microenvironment, whether IL-12 contributes to T cell exhaustion, and whether TIM-3-mediated T cell exhaustion impacts patient outcome in FL. We found that serum IL-12 levels were elevated in FL patients compared to healthy individuals (median: 0.50 ng/ml, n=30 vs 0.32 ng/ml, n=22; p= 0.03) and that elevated serum IL-12 levels were associated with a poor outcome in these patients when treated with rituximab alone as initial therapy. Using 0.56 ng/ml as a cutoff, patients with serum IL-12 levels of greater than 0.56 ng/ml had a significantly shorter time to progression than patients with IL-12 levels less than 0.56 ng/ml (12 months versus 40 months; p=0.001). Both lymphoma B cells and monocytes were able to produce IL-12 and contributed to elevated serum levels of IL-12 in FL. Importantly, we found that IL-12 strongly induced TIM-3 expression in a dose-dependent manner. Endogenous production of IL-12 by lymphoma B cells and monocytes was capable of regulating TIM-3 expression on T cells from FL. As a consequence, TIM-3 was highly expressed on a subset of T cells from PBMCs or lymph nodes from FL patients while its expression was negligible or moderate on T cells from normal PBMCs or benign lymph nodes, respectively. The number of TIM-3-expressing T cells accounted for approximately 32% and 39% of CD4+ or CD8+ T cells in biopsy specimens and 6.2% and 6.7% in peripheral blood of FL patients. TIM-3+ T cells, co-expressed with PD-1, exhibited a reduced ability to proliferate and decreased cytokine production compared to TIM-3- T cells. Similarly, IL-12-induced TIM-3+ T cells gradually lost the capacity to produce cytokines over a period of time. These results suggest that TIM-3-expressing T cells are functionally exhausted. In addition, TIM-3+ T cells were prone to apoptotic induction by its ligand galectin (Gal) -9. The phosphorylation of p38 was higher in TIM-3+ T cells compared to TIM-3- T cells when exposed to Gal-9, suggesting MAPK pathway was involved in Gal-9-mediated apoptosis of TIM-3+ T cells. Finally, increased numbers of intratumoral TIM-3-expressing cells were associated with a higher histological grade, higher LDH levels and a poor survival in FL patients. Taken together, these results indicate that IL-12, in contrast to its role in augmenting immune response through IFN-g, induces T cell exhaustion by upregulating TIM-3 expression. We further demonstrated that lymphoma B cells produce IL-12 thereby contributing to T cell exhaustion by promoting TIM-3 expression on intratumoral T cells. Impairment of anti-tumor immunity due to T cell exhaustion induced by the IL-12-TIM-3 pathway may account for the observation that high levels of serum IL-12 and increased number of TIM-3+CD4+ T cells correlate with a worse outcome in FL patients. These findings not only reveal a novel IL-12-TIM-3 pathway that plays an important role in impairing tumor immunity and detrimentally affecting prognosis in FL patients, but may have therapeutic potential for cancer patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4947-4947
Author(s):  
Menna Hodge ◽  
Susan O’Brien ◽  
Adam Abdool ◽  
Michael Keating ◽  
Iman Jilani ◽  
...  

Abstract </DEL> CD5, a transmembrane protein expressed in T-cells, few B-cells, and chronic lymphocytic leukemia (CLL) B-cells, is the ligand for CD72 and may play a role in B-cell-T-cell communication. CD5 is part of the T-cell receptor (TCR)-CD3 complex in T-cells as well as the B-cell receptor (BCR) complex and serves as substrate for induction of tyrosine kinase activity. Since leukemic cells have high turnover and pour their protein, RNA, and DNA into the circulation, we speculated that free circulating CD3 (cCD3) and CD5 (cCD5) could be detected in the plasma of patients with CLL. We have developed a bead-based sandwich immunoassay to measure cCD3 and cCD5 in the plasma. Using this assay, we assessed the value of cCD5 measurement, alone and after normalization to cCD3 levels, as a tumor marker in CLL. Plasma levels of cCD3 and cCD5 were measured in 85 patients with CLL and 51 normal control subjects. cCD3 and cCD5 levels were significantly higher in patients with CLL (median, 7,465 and 55,806 U/μl, respectively) than in normal control subjects (median, 830 and 1,671 U/μl, respectively). Patients with CLL had significantly higher cCD5:cCD3 ratios (median, 5.28; range, 0–161) than did normal controls (median, 1.70; range, 0–8.06) (P <0.0001). Levels of cCD5, but not cCD3, correlated positively with WBC count, β2-microglobulin level, splenomegaly, and Rai stage (all P <0.01). The cCD5:cCD3 ratio also correlated with Rai stage (P = 0.04) and β2-microglobulin level (P = 0.03). cCD5 levels and the cCD5:cCD3 ratio both correlated with survival (P = 0.03). These findings confirm that free circulating surface markers can be detected in the circulation of patients with CLL, most likely reflect the tumor load, and can be used as tumor markers. The biological and therapeutic relevance of these free circulating proteins should be considered in pharmacokinetic and pharmacodynamic studies.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2689-2697 ◽  
Author(s):  
Elaine J. Schattner ◽  
John Mascarenhas ◽  
Inna Reyfman ◽  
Mary Koshy ◽  
Caroline Woo ◽  
...  

Chronic lymphocytic leukemia (CLL) is characterized by a clonal expansion of CD5+ B cells in the peripheral blood. Associated immune aberrations include abnormal Th-cell function and pathogenic autoantibodies. Under most circumstances, CLL B cells do not proliferate in culture and express a limited repertoire of surface antigens, including CD19, CD20, CD23, CD27, CD40, and CD70. In this report, we demonstrate that freshly isolated B cells from a subset of CLL cases constitutively express CD40 ligand (CD40L, CD154), a member of the tumor necrosis factor family which is normally expressed by activated CD4+ T cells and mediates T-cell–dependent B-cell proliferation and antibody production. The degree of CD40L expression varied considerably among the CLL cases examined. CD40L was detected in purified CLL B cells by immunofluorescence flow cytometry, by RT-PCR, and by immunoprecipitation. To demonstrate that CD40L in the CLL B cells is functional, we used irradiated CLL cells to stimulate IgG production by target, nonmalignant B cells in coculture. The CLL B cells induced IgG production by normal B cells to a similar degree as did purified T cells in a process which was partially inhibited by monoclonal antibody to CD40L. This is one of the first reports of CD40L expression in a B-cell tumor. The data suggest that CD40L in the tumor cells may be a factor in the generation of pathologic antibodies by normal B cells in some patients with CLL.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

Abstract The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 533-541
Author(s):  
KF Mangan ◽  
L D'Alessandro

To define further the role of marrow T suppressor lymphocytes in the pathogenesis of the hypoproliferative anemia in all Rai clinical stages of B cell chronic lymphocytic leukemia (CLL), marrow erythroid progenitor cell (CFU-E and BFU-E) frequency, marrow T gamma lymphocyte frequency per 1,000 nucleated marrow cells, and T cell-erythroid progenitor cell interactions were examined in 30 CLL patients and normal control subjects. As compared with control subjects, decreased numbers of CFU-E and BFU-E were found in patient marrow depleted of neoplastic B cells in all Rai stages of the disease. As a group, Rai stage III through IV patients with or without aplasia (CLL-aplasia) had significantly fewer CFU-E and BFU-E than did Rai O through II stage patients. The numbers of T gamma cells infiltrating CLL marrows were increased 3, 9, and 20 times normal in Rai O through II, Rai III through IV, and CLL-aplasia groups, respectively. Removal of T cells from marrow increased growth of CFU-E and BFU-E in all Rai O through IV patients, but the increase was significant in the CLL-aplasia group only (P less than .05). However, autologous coculture of marrow T cells or T gamma cells but not B cells with marrow B + T-depleted null cells at ratios of 0.2:1 to 1:1 suppressed CFU-E and BFU-E growth in all three patient groups. We conclude that the hypoproliferative anemia occurring in the course of B cell CLL is due to gradual accumulation in the marrow of T gamma lymphocytes which suppress erythroid progenitor cell growth. T gamma cell suppression of erythropoiesis and marrow T gamma cell expansion is detectable in the earliest Rai stages of the disease.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3538-3538
Author(s):  
Greta Maria Paola Giordano Attianese ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Virna Marin ◽  
Malika Brandi ◽  
...  

Abstract B-Chronic lymphocytic leukemia (B-CLL) is characterized by a progressive accumulation of mature B-lymphocytes expressing CD19, CD20dim and aberrantly expressing the CD5 T-cell marker. Moreover, they over-express the B-cell activation marker CD23. Chimeric Antigen Receptors (CAR) are engineered molecules able to redirect T-cell killing/effector activity towards a selected target in a non MHC-restricted manner. First trials targeting B-CLL were based on both monoclonal antibodies and anti-CD19/anti-CD20 CAR-transduced T cells. However, this approach causes the elimination of normal B-lymphocytes and B-precursors with consequent impairment of humoral responses. Selective CD23 expression on B-CLL cells renders it an optimal target to design a specific CAR. A new CD23-targeting CAR to redirect T cells against CD23+ B-CLL has been generated. After transduction, modified T cells were tested for cytotoxicity against different CD23+-targets, using a classic chromium release assay and for specific cytokine release by multiplex flow cytomix assay. The anti-CD23 CAR was stably expressed by healthy donor-derived primary T cells after transduction (average expression,20%;range,10%–60%;n=10) and conferred them a strong cytotoxicity against CD23+ tumor cell lines: Epstein Barr Virus transformed lymphoblastoid cell line (EBV-LCL) (average lysis, 50%; range 15%–70%, at 40:1 Effector:Target (E:T) ratio; n=5); Bjab and Jeko cell lines transduced with human CD23 antigen (average lysis, 60%; range, 20%–75%, at 40:1 E:T ratio; n=3). On the contrary, anti-CD23 transduced T-cells displayed no relevant killing versus normal B cells (average lysis, 8%; range, 1%–15% at 40:1 E:T ratio; n=3), differently from anti-CD19 CAR redirected T-cells, which killed tumor and normal B cells in an indistinct manner. T cells from B-CLL patients were also efficiently transduced with the anti-CD23 CAR (average expression, 80%; range, 70%–90%; n=3) and redirected specifically toward autologous blasts (average lysis, 29%; range, 21%–35% at 20:1 E:T ratio; n=3), without being inhibited by soluble CD23-enriched autologous plasma. Moreover, we demonstrated that expression of the anti-CD23 CAR caused a significant increase in cytokine release from transduced in vitro activated T cells after 48h stimulation with irradiated EBV-LCL at 1:1 ratio, both in healthy donors (n=3) and B-CLL patients (n=2). Anti-CD23 CAR expressing T cells from healthy donors secreted 5.5-fold more INF-gamma (3079 pg/ml vs 561pg/mL, p=0.05) and 11-fold more TNF-alpha (187.17 pg/ml vs 16.53 pg/mL, p=0.05), 147-fold more IL-5 (147 pg/ml vs 0 pg/mL, p=0.05) and 13-fold more IL-8 (590 pg/ml vs 43.24pg/mL, p=0.05), compared to non transduced T cells (n=3). In line with these findings, T cells expressing anti-CD23 CAR from B-CLL donors secreted 8.8-fold more INF-gamma (2988 pg/ml vs 337pg/mL, p=0.05) and 17-fold more TNF-gamma (187.17 pg/ml vs 17.34 pg/mL, p=0.05); 25.8-fold more IL-5 (3483.14 pg/ml vs 134.785 pg/mL, p=0.05), 173-fold more IL-8 (2154 pg/ml vs 12.415 pg/mL, p=0.05), compared to non transduced T cells. Altogether these results suggest that for the potentiality to get selective and potent killing of tumor cells, while sparing normal B cells, and for the capability to induce the selective release of immunostimulatory cytokines, CD23-targeting through a specific CAR holds great promises for adoptive immunotherapy of B-CLL.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 533-541 ◽  
Author(s):  
KF Mangan ◽  
L D'Alessandro

Abstract To define further the role of marrow T suppressor lymphocytes in the pathogenesis of the hypoproliferative anemia in all Rai clinical stages of B cell chronic lymphocytic leukemia (CLL), marrow erythroid progenitor cell (CFU-E and BFU-E) frequency, marrow T gamma lymphocyte frequency per 1,000 nucleated marrow cells, and T cell-erythroid progenitor cell interactions were examined in 30 CLL patients and normal control subjects. As compared with control subjects, decreased numbers of CFU-E and BFU-E were found in patient marrow depleted of neoplastic B cells in all Rai stages of the disease. As a group, Rai stage III through IV patients with or without aplasia (CLL-aplasia) had significantly fewer CFU-E and BFU-E than did Rai O through II stage patients. The numbers of T gamma cells infiltrating CLL marrows were increased 3, 9, and 20 times normal in Rai O through II, Rai III through IV, and CLL-aplasia groups, respectively. Removal of T cells from marrow increased growth of CFU-E and BFU-E in all Rai O through IV patients, but the increase was significant in the CLL-aplasia group only (P less than .05). However, autologous coculture of marrow T cells or T gamma cells but not B cells with marrow B + T-depleted null cells at ratios of 0.2:1 to 1:1 suppressed CFU-E and BFU-E growth in all three patient groups. We conclude that the hypoproliferative anemia occurring in the course of B cell CLL is due to gradual accumulation in the marrow of T gamma lymphocytes which suppress erythroid progenitor cell growth. T gamma cell suppression of erythropoiesis and marrow T gamma cell expansion is detectable in the earliest Rai stages of the disease.


Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 2968-2974 ◽  
Author(s):  
Batoul Pourgheysari ◽  
Rachel Bruton ◽  
Helen Parry ◽  
Lucinda Billingham ◽  
Chris Fegan ◽  
...  

Abstract B-cell chronic lymphocytic leukemia is associated with immune suppression and an altered T-cell repertoire with expansion of memory cells. Cytomegalovirus (CMV) is a common herpes virus that elicits a strong virus-specific T-cell immune response after infection. We studied the CMV-specific CD4+ T-cell response in 45 patients and 35 control subjects and demonstrated that it was markedly expanded in the patient group, averaging 11% of the CD4+ pool compared with 4.7% in controls. The magnitude of the CMV-specific CD4+ immune response increased with disease stage and was particularly high in patients who received chemotherapy. Within this group, the CMV-specific response comprised over 46% of the CD4+ T-cell repertoire in some patients. Serial analysis revealed that CMV-specific immunity increased during treatment with chemotherapy and remained stable thereafter. CMV-seropositive patients exhibited a markedly altered CD4+ T-cell repertoire with increased numbers of CD45R0+ T cells and a reduction in CD27, CD28, and CCR7 expression. Overall survival was reduced by nearly 4 years in CMV-seropositive patients, although this did not reach statistical significance. CLL patients therefore demonstrate an expansion of the CD4+ CMV-specific immune response, which is likely to contribute to the immunological and clinical features of this disease.


Sign in / Sign up

Export Citation Format

Share Document