Risk factors associated with skeletal-related events following denosumab cessation among patients with bone metastases from solid tumors: A real-world machine learning approach.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1567-1567
Author(s):  
Alison Stopeck ◽  
Celestia S. Higano ◽  
David H. Henry ◽  
Basia A. Bachmann ◽  
Marko Rehn ◽  
...  

1567 Background: The anti-RANKL monoclonal antibody denosumab has been shown to be superior to the bisphosphonate zoledronate for the prevention of skeletal-related events (SREs) in patients with incident bone metastases (BM) from solid tumors (ST). Clinical guidelines recommend the use of a bone-targeting agent for SRE prevention for ≥ 2 years. However, real-world treatment patterns in the U.S. suggest that the denosumab treatment duration is often < 1 year. Applying a machine learning approach, we sought to identify risk factors associated with SRE incidence following cessation of denosumab to help inform optimal clinical SRE prevention strategies. Methods: Using the Optum PanTher Electronic Health Record repository, patients diagnosed with incident BM from a primary ST between 1 Jan 2007 and 1 Sep 2019 were evaluated for inclusion in the study. Eligible patients had to receive ≥ 2 consecutive 120 mg denosumab doses on an every 4-week (± 14 days) schedule and have a minimum follow-up ≥ 1 year after the last denosumab dose or an SRE occurring between days 84 and 365 after denosumab cessation. Extreme gradient boosting was used to develop an SRE risk prediction model evaluated on a test dataset. Impact and relative importance of available medical, clinical, and treatment factors on SRE risk following denosumab cessation were extracted from the model using Shapley additive explanations (SHAP). Univariate analyses on risk factors with the highest importance from pooled and tumor-specific models were also conducted. Results: A total of 1,414 patients (breast, n = 563 [40%]; prostate, 421 [30%]; lung, 180 [13%]; other cancers, 250 [17%]) met inclusion criteria, with a median of 253 (min, 88; max, 2726) days of denosumab treatment; 490 (35%) experienced ≥ 1 SRE following denosumab cessation. With a meaningful model performance based on an area under the receiver operating characteristic (AUROC) score of 77%, SHAP identified several significant factors that predicted an increased SRE risk following denosumab cessation, including prior SREs, shorter denosumab treatment duration, and a higher number of clinic visits as the top-ranked factors (Table). Conclusions: A machine learning approach to SRE risk factor identification may help clinicians better assess the individualized patient’s need for denosumab treatment persistence and improve patient outcomes. Results from tumor-specific groups will be presented at the meeting.[Table: see text]

JAMA Surgery ◽  
2019 ◽  
Vol 154 (11) ◽  
pp. 1014 ◽  
Author(s):  
J. Madison Hyer ◽  
Aslam Ejaz ◽  
Diamantis I. Tsilimigras ◽  
Anghela Z. Paredes ◽  
Rittal Mehta ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 32-44
Author(s):  
Joseph Simonian ◽  
Chenwei Wu ◽  
Daniel Itano ◽  
Vyshaal Narayanam

2019 ◽  
Vol 4 (8) ◽  
pp. 726-733 ◽  
Author(s):  
Leticia de Oliveira ◽  
Liana C.L. Portugal ◽  
Mirtes Pereira ◽  
Henry W. Chase ◽  
Michele Bertocci ◽  
...  

Author(s):  
Mengyuan Li ◽  
Zhilan Zhang ◽  
Wenxiu Cao ◽  
Yijing Liu ◽  
Beibei Du ◽  
...  

2018 ◽  
Author(s):  
Gary H. Chang ◽  
David T. Felson ◽  
Shangran Qiu ◽  
Terence D. Capellini ◽  
Vijaya B. Kolachalama

ABSTRACTBackground and objectiveIt remains difficult to characterize pain in knee joints with osteoarthritis solely by radiographic findings. We sought to understand how advanced machine learning methods such as deep neural networks can be used to analyze raw MRI scans and predict bilateral knee pain, independent of other risk factors.MethodsWe developed a deep learning framework to associate information from MRI slices taken from the left and right knees of subjects from the Osteoarthritis Initiative with bilateral knee pain. Model training was performed by first extracting features from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices. The extracted features from all the 2D slices were subsequently combined to directly associate using a fused deep neural network with the output of interest as a binary classification problem.ResultsThe deep learning model resulted in predicting bilateral knee pain on test data with 70.1% mean accuracy, 51.3% mean sensitivity, and 81.6% mean specificity. Systematic analysis of the predictions on the test data revealed that the model performance was consistent across subjects of different Kellgren-Lawrence grades.ConclusionThe study demonstrates a proof of principle that a machine learning approach can be applied to associate MR images with bilateral knee pain.SIGNIFICANCE AND INNOVATIONKnee pain is typically considered as an early indicator of osteoarthritis (OA) risk. Emerging evidence suggests that MRI changes are linked to pre-clinical OA, thus underscoring the need for building image-based models to predict knee pain. We leveraged a state-of-the-art machine learning approach to associate raw MR images with bilateral knee pain, independent of other risk factors.


Sign in / Sign up

Export Citation Format

Share Document