Risk Assessment in Wastewater Reclamation and Reuse

Author(s):  
Donald R. Rowe ◽  
Isam Mohammed Abdel-Magid
1992 ◽  
Vol 26 (7-8) ◽  
pp. 1513-1524 ◽  
Author(s):  
T. Asano ◽  
L. Y. C. Leong ◽  
M. G. Rigby ◽  
R. H. Sakaji

The State of California's WastewaterReclamationCriteria is under review and will be revised and expanded to include several new regulations on the use of reclaimed municipal wastewater. To provide a scientific basis for the evaluation of the existing and proposed Criteria, enteric virus monitoring data from secondary and tertiary effluents were evaluated. These virus data were obtained from special studies and monitoring reports, covering the period from 1975 to 1989, including ten municipal wastewater treatment facilities in California. Based on the enteric virus data from these reports, and using the current Criteria as a guide, four exposure scenarios were developed to determine the risk of waterborne enteric virus infection to humans as a consequence of wastewater reclamation and reuse. The exposure assessments included food crop irrigation, landscape irrigation for golf courses, recreational impoundments, and ground water recharge. The virus enumeration and the resulting risk assessments described in this paper provide a comparative basis for addressing the treatment and fate of enteric viruses in wastewater reclamation and reuse. The analyses show that annual risk of infection from exposure to chlorinated tertiary effluent containing 1 viral unit/100 L in recreational activities such as swimming or golfing is in the range of 10−2 to 10−7, while exposures resulting from food-crop irrigation or groundwater recharge with reclaimed municipal wastewater is in the range of 10−6 to 10−11. The risk analyses are also used to demonstrate that the probability of infection can be further mitigated by controlling exposure to reclaimed wastewater in the use area.


2001 ◽  
Vol 43 (10) ◽  
pp. 67-74 ◽  
Author(s):  
P. Xu ◽  
F. Valette ◽  
F. Brissaud ◽  
A. Fazio ◽  
V. Lazarova

An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 387-392 ◽  
Author(s):  
G.T. Seo ◽  
T.S. Lee ◽  
B.H. Moon ◽  
J.H. Lim

Ozone was incorporated into an ultrafiltration system to produce higher quality reclaimed water from domestic laundry wastewater. Characteristics of the wastewater for initial washing waste were 488~2,847 mg/L COD, 62~674 mg/L MBAS, and 38~857 mg/L SS. The wastewater was contacted with ozone in a 10L storage tank and circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 5,000 and 10,000. It has an effective filtration area of 0.06m2. The experiment was carried out in two phases with either continuous or intermittent ozone injection. For intermittent ozone injection, the mode of injection interval was changed to 5 min./5 min. and 5 min./10 min. for injection/idling. Ozone was dosed at the concentration of 1.5 mg/L. The permeate quality of UF (MWCO 5,000) was 57 mg/L as COD and 5 mg/L as MBAS at continuous ozone injection with removal of 95% in COD and 96.9% in MBAS. Using UF with MWCO 10,000, it was 93.7% and 95.5% of COD and MBAS, respectively. And using intermittent ozone injection, the removal efficiency was 93% in COD and 93.5% in MBAS without any deterioration in COD and MBAS removal. It could reduce the treatment cost. Using ozone injection, fouling of the membrane was also controlled by increasing organic degradation. The flux of UF (MWCO 5,000 and 10,000) was 0.13 and 0.20 m/d for 3 hour filtration (TMP 40≈45 kPa) without ozone injection. It was increased to 0.18 and 0.24m/d by ozone injection. The reclaimed water quality could be estimated well enough to reuse for rinsing purposes.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 361-365 ◽  
Author(s):  
D. Abdessemed ◽  
G. Nezzal ◽  
R. Ben Aim

We considered the treatment of domestic wastewater by coagulation–adsorption–ultrafiltration, and a test of adsorption like pre-treatment to the membrane as an alternative for wastewater reclamation and reuse. The performances of two inorganic tubular membranes (M2 and M5 CARBOSEP with 15,000 Da and 10,000 Da MWCO) were studied. Powdered activated carbon was used as adsorbent agent and FeCl3 as a coagulant. Coupling adsorption and ultrafiltration resulted in satisfactory results: the efficiency of COD removal was increased by using PAC compared with results obtained when using only UF membranes.


Sign in / Sign up

Export Citation Format

Share Document