Evaluation and Refinement of the Bovine Cornea Opacity and Permeability Assay

2003 ◽  
pp. 133-140
Keyword(s):  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 171
Author(s):  
Marika Ruponen ◽  
Konsta Kettunen ◽  
Monica Santiago Pires ◽  
Riikka Laitinen

In this study, the amino acid arginine (ARG) and P-glycoprotein (P-gp) inhibitors verapamil hydrochloride (VER), piperine (PIP) and quercetin (QRT) were used as co-formers for co-amorphous mixtures of a Biopharmaceutics classification system (BCS) class IV drug, furosemide (FUR). FUR mixtures with VER, PIP and QRT were prepared by solvent evaporation, and mixtures with ARG were prepared by spray drying in 1:1 and 1:2 molar ratios. The solid-state properties of the mixtures were characterized with X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) in stability studies under different storage conditions. Simultaneous dissolution/permeation studies were conducted in side-by-side diffusion cells with a PAMPA (parallel artificial membrane permeability assay) membrane as a permeation barrier. It was observed with XRPD that ARG, VER and PIP formed co-amorphous mixtures with FUR at both molar ratios. DSC and FTIR revealed single glass transition values for the mixtures (except for FUR:VER 1:2), with the formation of intermolecular interactions between the components, especially salt formation between FUR and ARG. The co-amorphous mixtures were found to be stable for at least two months under an elevated temperature/humidity, except FUR:ARG 1:2, which was sensitive to humidity. The dissolution/permeation studies showed that only the co-amorphous FUR:ARG mixtures were able to enhance both the dissolution and permeation of FUR. Thus, it is concluded that formulating co-amorphous salts with ARG may be a promising option for poorly soluble/permeable FUR.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 801
Author(s):  
Abdelrahman Mohamed ◽  
Viktor Korzhikov-Vlakh ◽  
Nan Zhang ◽  
André Said ◽  
Iuliia Pilipenko ◽  
...  

A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2754
Author(s):  
Ondrej Vesely ◽  
Petr Marsik ◽  
Veronika Jarosova ◽  
Ivo Doskocil ◽  
Karel Smejkal ◽  
...  

2-arylbenzofurans represent a small group of bioactive compounds found in the plant family Moraceae. As it has not been investigated whether these substances are stable during passage through the gastrointestinal tract, their biological effects may be altered by the metabolism of intestinal microbiota or cells. The aim of the present study was to investigate and compare mulberrofuran Y (1), moracin C (2), and mulberrofuran G (3) in an in vitro model of human intestinal bacterial fermentation and in an epithelial model using the Caco-2 cell line. The analysis of compounds by LC-MS-Q-TOF showed sufficient stability in the fermentation model, with no bacterial metabolites detected. However, great differences in the quantity of permeation were observed in the permeability assay. Moreover, mulberrofuran Y (1) and moracin C (2) were observed to be transformed into polar metabolites by conjugation. Among the test compounds, mulberrofuran Y (1) was mostly stable and accumulated in endothelial cells (85.3%) compared with mulberrofuran G (3) and moracin C (2) (14% and 8.2%, respectively). Thus, only a small amount of mulberrofuran Y (1) was conjugated. Moracin C (2) and mulberrofuran G (3) were metabolized almost completely, with only traces of the unchanged molecule being found on the apical and cellular sides of the system. Only conjugates of mulberrofuran Y (1) and moracin C (2) were able to reach the basolateral side. Our results provide the basic description of bioavailability of these three compounds, which is a necessary characteristic for final evaluation of bio-efficacy.


Author(s):  
Xiaochun Mao ◽  
Shaowei Zhang ◽  
Hui Hen ◽  
Longting Du ◽  
Guigang Li ◽  
...  

2019 ◽  
Vol 140 (5) ◽  
pp. 2305-2315
Author(s):  
Tatyana V. Volkova ◽  
Ekaterina N. Domanina ◽  
Mikhail V. Chislov ◽  
Alexey N. Proshin ◽  
Irina V. Terekhova

2011 ◽  
Vol 412 (3) ◽  
pp. 429-434 ◽  
Author(s):  
Marc Lemieux ◽  
Frédéric Bouchard ◽  
Patrick Gosselin ◽  
Joanne Paquin ◽  
Mircea Alexandru Mateescu

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Susanne N. Kolle ◽  
Ursula G. Sauer ◽  
Maria C. Rey Moreno ◽  
Wera Teubner ◽  
Wendel Wohlleben ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document