Seismic response of asymmetrical buildings using pushover analysis

Author(s):  
W. K. Tso ◽  
A. S. Moghadam
2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


2009 ◽  
Vol 13 (8) ◽  
pp. 1089-1100 ◽  
Author(s):  
Angelo D'Ambrisi ◽  
Mario De Stefano ◽  
Marco Tanganelli

2010 ◽  
Vol 163-167 ◽  
pp. 4076-4082
Author(s):  
Ying Na Mu ◽  
Lei Shi ◽  
Zhe Zhang

Because the traditional pushover analysis can not take the contributions of higher modes into account, To overcome this limitation, a modal pushover analysis procedure (MPA) is proposed by some researchers, which can involve the combination of multi-mode contributions to response. In this paper, much improvement on MPA procedure is made with consideration of the changes of seismic response after structural yielding and anew distribution of inertia forces. The method is verified by one example of bridge structure. It is concluded that the improvement part-sectionalized MPA presented in this paper has high accuracy.


Author(s):  
Maria Vathi ◽  
Spyros A. Karamanos

Unanchored liquid storage tanks under strong earthquake loading tend to uplift. In the present study, the effects of base uplifting on the seismic response of unanchored tanks are presented with emphasis on elephant’s foot buckling, base plate strength and shell-to-base connection capacity. Towards this purpose, base uplifting mechanics is analyzed through a detailed simulation of the tank using non-linear finite elements, and a static pushover analysis is conducted that considers the hydrodynamic pressure distribution due to seismic loading on the tank wall and the base plate. The uplifting provisions from EN 1998-4 and API 650 Appendix E standards are briefly described. Numerical results for a typical 27.8-meter-diameter steel tank are compared with the above design provisions.


2010 ◽  
Vol 04 (03) ◽  
pp. 215-230 ◽  
Author(s):  
RAMIN TABATABAEI ◽  
HAMED SAFFARI

In this paper, an energy-based approach to estimate the inelastic response of buildings is presented. In order to estimate torsional effects on the seismic response of structure, the associated plastic mechanism is developed in the three-dimensional model using an adapted version of the DRAIN-3DX program. The changing dynamic properties due to plastic mechanism are used for the calculation of modal lateral loads. Thus, the effects of both stiffness changes and localized response mechanisms at the structure under modal loading are included. The total input energy due to seismic loading is composed of both work done by (1) lateral force pattern acting through the translation displacement and (2) torsion acting through the rotation of each floor. For assessment of the seismic response of asymmetric buildings, the proposed procedure is shown to provide superior results compared to those obtained through deployment of the other methods commonly used: the adaptive modal combination (AMC) procedure, the modal pushover analysis (MPA), and the response history analysis (RHA) approach.


Sign in / Sign up

Export Citation Format

Share Document