Correlation of N value with S-wave velocity and shear modulus

2021 ◽  
pp. 67-72 ◽  
Author(s):  
Tsuneo Imai ◽  
Keiji Tonoughi
Keyword(s):  
S Wave ◽  
Geophysics ◽  
2022 ◽  
pp. 1-49
Author(s):  
Yu-Tai Wu

Beishih Village of Hsinhua Township in southern Taiwan is a unique location for studying soil liquefaction. Soil liquefaction was observed at the same site after earthquakes in 1946, 2010, and 2016, each of which had a Richter magnitude greater than six. This recurrence provides an opportunity for analyzing soil condition variations resulting from soil liquefaction. Seismic data sets were collected in 2011, 2014, 2016, and 2017. We used seismic refraction tomography and the multichannel analysis of surface waves to estimate P- and S-wave velocities. In S-wave velocity profiles, low shear velocity zones were located beneath sand volcanoes shortly after two earthquakes and disappeared 4 years after a 2010 earthquake. However, the P-wave velocity is less sensitive to soil condition changes, possibly because groundwater obscures the effect of soil liquefaction on velocity profiles. In addition, we used seismic wave velocities to determine the importance of soil properties such as Poisson’s ratio, shear modulus, and porosity to identify the cause of the low shear velocity zone. Notably, although porosity decreased after soil grain rearrangement, sand and clay mixing increased the Poisson’s ratio, reducing the shear modulus of the soil. In addition, a soil layer between 2 and 7 m and a deeper layer below 10 m that resulted in sand volcanoes were both liquefied. We also considered how the evaluation of soil liquefaction potential could be affected by long-term variations in soil conditions and changes resulting from liquefaction. The factor of safety was used to evaluate the liquefaction potential of the site. The results revealed that the assessment conducted long after the earthquake underestimated risk because the soil developed shear strength after the earthquake.


Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. E35-E39 ◽  
Author(s):  
Jack P. Dvorkin

The classical Raymer-Hunt-Gardner functional form [Formula: see text], where [Formula: see text] and [Formula: see text] denote the [Formula: see text]-wave velocity in the solid and pore-fluid phases, respectively, and [Formula: see text] is the total porosity, can also be used to relate the S-wave velocity in dry rock to porosity and mineralogy as [Formula: see text], where [Formula: see text] is the S-wave velocity in the solid phase. Assuming that the shear modulus of rock does not depend on the pore fluid, [Formula: see text] in wet rock is [Formula: see text], where [Formula: see text] and [Formula: see text] denote the bulk density of the dry and wet rock, respectively. This new functional form for [Formula: see text] prediction reiterates Nur’s critical porosity concept: The [Formula: see text] ratio in dry rock equals that in the solid phase. It accurately predicts [Formula: see text] in consolidated clastic and carbonate rock. Two motivations for using it are (1) it is simple, and (2) it predicts [Formula: see text] not from [Formula: see text] but directly from [Formula: see text] and mineralogy.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. D399-D407 ◽  
Author(s):  
Nishank Saxena ◽  
Gary Mavko

The problem of predicting the change in seismic velocities (P-wave and S-wave) upon the change in pore-fill material properties is commonly known as substitution. For isotropic rocks, P- and S-wave velocities are fundamentally linked to the effective P-wave and shear moduli. The change in the S-wave velocity or shear modulus upon fluid substitution can be predicted with Gassmann’s equations starting only with the initial S-wave velocity. However, predicting changes in P-wave velocity or the P-wave modulus requires knowledge of the initial P- and S-wave velocities. We initiated a rigorous derivation of the P-wave modulus for fluid and solid substitution in monomineralic isotropic rocks for cases in which an estimate of the S-wave velocity or shear modulus is not available. For the general case of solid substitution, the exact equation for the P-wave modulus depends on parameters that are usually unknown. However, for fluid substitution, fewer parameters are required. As Poisson’s ratio increases for the mineral in the rock frame, the dependence of exact substitution on these unknown parameters decreases. As a result, in the absence of shear velocity, P-wave modulus fluid substitution can, for example, be performed with higher confidence for rocks with a calcite or dolomite frame than it can for rocks with quartz frame. We evaluated a recipe for applying the new P-wave modulus fluid substitution. This improves on existing work and is recommended for practice.


2014 ◽  
Vol 96 ◽  
pp. 353-360
Author(s):  
Ya-Chuan Lai ◽  
Bor-Shouh Huang ◽  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Ruey-Der Hwang ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 286-298 ◽  
Author(s):  
Xiao-Man ZHANG ◽  
Jia-Fu HU ◽  
Yi-Li HU ◽  
Hai-Yan YANG ◽  
Jia CHEN ◽  
...  

Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


Sign in / Sign up

Export Citation Format

Share Document