Applications of the manoeuvring prediction program SIMSUP to meet the new IMO standards

2021 ◽  
pp. 563-576
Author(s):  
Giovanni Capurro ◽  
Paolo Sodomaco
Keyword(s):  
Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.


1987 ◽  
Author(s):  
Kart L. Kirkman

The velocity prediction program, VPP, appeared on the yachting scene about ten years ago and it now dominates design and sailing. Originally implemented as a handicapping tool under the Measurement Handicap System, now accepted internationally as IMS, it has seen widespread acceptance for many other uses, from design to tuning and racing. This capability means that it is productive, even necessary, for the typical sailor interested in good performance to understand how to apply a VPP to his activities. To do so requires an appreciation of how a VPP functions and how it is applied to practical sailing problems, such as sail selection or tactics. The paper presents a review of VPP fundamentals and then treats the following applications: - Sail selection and strategy for offshore yachts. - Tuning and optimization of all boats. It is the goal of the paper to impart a working understand­ing of the VPP to many sailors so that they can take advantage of the technology in their normal activities.


2007 ◽  
Author(s):  
Kai Graf ◽  
Marcus Pelz ◽  
Volker Bertram ◽  
H. Söding

A method for the prediction of seakeeping behaviour of sailing yachts has been developed. It is based on linear strip theory with some non-linear extensions. The method is capable to take into account heeling and yawing yacht hulls, yacht appendages and sails. The yacht's response amplitude operators (RAO) and added resistance in waves can be predicted for harmonic waves as well as for natural wave spectra. The method is used to study added resistance in seaways for ACC-V5 yachts of varying beam. Results are used for further VPP investigations. The AVPP velocity prediction program is used to study optimum length to beam ratio of the yachts depending on wind velocity and upwind to downwind weighting. This investigation is carried out for flat water conditions as well as for two typical wave spectra. The results show that taking into account added resistance in seaways has a strong impact on predicted performance of the yacht.


Author(s):  
Harsh Vinayak ◽  
Donald R. Houser

Abstract This paper deals with the experimental study of dynamic transmission error of a gear pair. Two aspects of the experiment are discussed : 1) design of the test facility and data acquisition system and 2) comparison of transmission error and load distribution with experimental data. Several gears were tested under varying misalignments. A prediction program LDP (Load distribution Program) was used for theoretical calculations of dynamic transmission error.


Author(s):  
P. Pilidis ◽  
N. R. L. Maccallum

The paper describes a general program which has been developed for the prediction of the transient performance of gas turbines. The program is based on the method of continuity of mass flow. It has been applied successfully to a wide range of aero gas turbines, ranging from single to three-spool and from simple jet to bypass types with or without mixed exhausts. The results for three of these engine types are illustrated. Computing times are reasonable, increasing with the complexity of the engine. A parallel paper describes the inclusion of thermal effects in the prediction program.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tyler Alioto ◽  
Ernesto Picardi ◽  
Roderic Guigó ◽  
Graziano Pesole

New genomes are being sequenced at an increasingly rapid rate, far outpacing the rate at which manual gene annotation can be performed. Automated genome annotation is thus necessitated by this growth in genome projects; however, full-fledged annotation systems are usually home-grown and customized to a particular genome. There is thus a renewed need for accurateab initiogene prediction methods. However, it is apparent that fullyab initiomethods fall short of the required level of sensitivity and specificity for a quality annotation. Evidence in the form of expressed sequences gives the single biggest improvement in accuracy when used to inform gene predictions. Here, we present a lightweight pipeline for first-pass gene prediction on newly sequenced genomes. The two main components are ASPic, a program that derives highly accurate, albeit not necessarily complete, EST-based transcript annotations from EST alignments, and GeneID, a standard gene prediction program, which we have modified to take as evidence intron annotations. The introns output by ASPic CDS predictions is given to GeneID to constrain the exon-chaining process and produce predictions consistent with the underlying EST alignments. The pipeline was successfully tested on the entireC. elegansgenome and the 44 ENCODE human pilot regions.


2003 ◽  
Vol 2003 (194) ◽  
pp. 67-73
Author(s):  
Hiroshi Kobayashi ◽  
Takeshi Kinoshita

Sign in / Sign up

Export Citation Format

Share Document