Highway Capacity and Level of Service

2021 ◽  
Author(s):  
Ulrich Brannolte
2002 ◽  
Vol 1802 (1) ◽  
pp. 105-114 ◽  
Author(s):  
R. Tapio Luttinen

The Highway Capacity Manual (HCM) 2000 provides methods to estimate performance measures and the level of service for different types of traffic facilities. Because neither the input data nor the model parameters are totally accurate, there is an element of uncertainty in the results. An analytical method was used to estimate the uncertainty in the service measures of two-lane highways. The input data and the model parameters were considered as random variables. The propagation of error through the arithmetic operations in the HCM 2000 methodology was estimated. Finally, the uncertainty in the average travel speed and percent time spent following was analyzed, and four approaches were considered to deal with uncertainty in the level of service.


Author(s):  
Mark R. Virkler ◽  
Shashi Gannavaram ◽  
Anand Ramabhadran

The 1994 update of the Highway Capacity Manual (HCM) includes a planning procedure to estimate the capacity condition of a signalized intersection (Xcm). The planning method results can also be extended to a planning application of the more data-intensive HCM operational procedure to estimate intersection critical flow-to-capacity ratio (Xc) and level of service with only planning-level data. Both the planning procedure and the planning application of the operational procedure involve default adjustment factors and synthesized traffic signal timing (called the “default signal timing”). Data from 166 Missouri intersections were used to determine how well the planning approaches predict operational analysis results. In general, the default signal timings had shorter cycle lengths than the timing plans used at pretimed signals. The shorter cycle lengths led to slightly higher flow-to-capacity ratios, since a higher proportion of each cycle was devoted to lost time. The default signal timings also had more equal flow-to-capacity ratios within critical lane groups. The shorter cycle lengths and more equal flow-to-capacity ratios led to a predicted level of service that was the same or better than that calculated for actual conditions. For the subject intersections, locally calibrated default adjustment factors yielded better predictions of flow-to-capacity ratios and level of service than the HCM defaults. The planning value for Xcm was often less than the actual Xc for operational analysis of actual conditions. This was to be expected since Xcm is based on the maximum allowable cycle length. The HCM planning procedure is expected to receive wide use in a variety of planning and design applications. Calibration of appropriate local default values should improve the accuracy of the planning procedure results.


Author(s):  
Ning Wu ◽  
Werner Brilon

At unsignalized intersections, both on the major street and on the minor street, there may be short turning lanes alongside the through lanes following downstream from one single lane. This combined system is termed a shared-short lane (SSL). Up to now it has only been possible to calculate the capacity of these lanes at the stop line and the capacity of the diverging point, where the turning lane diverges from the through lane. For the total average delay of the involved individual movements, there is no applicable estimation procedure. As a special case, the shared lane (SL), which is used by several movements without a separate turning lane, must also be reconsidered. This paper presents a new model for the estimation of average delays of SSL with SL as a special case at unsignalized intersections. The model is based on the analogy to standard queuing systems. The results depend on the length of the short lane. The model is validated by simulation. The results demonstrate that the outcome of the models in current highway capacity manuals may be misleading, with the risk of inaccurately classifying the level of service of an intersection. Therefore, there is an urgent need to complete the relevant procedures in highway capacity manuals by more realistic estimation procedures for the total delay at an SSL or an SL. The methods in this paper—even if they are rather complex—are recommended to be incorporated into future versions of highway capacity manuals using some simplifications.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmed I. Z. Mohamed ◽  
Yusheng Ci ◽  
Yiqiu Tan

Mega elliptical roundabout is a new intersection on rural multilane highways. This intersection was developed in a previous paper using simulation data, and the authors found that it is better than interchange (full cloverleaf) in most scenarios of traffic flow. Basically, there are no guidelines or procedures for designing mega elliptical roundabout in AASHTO Green Book, Federal Highway Administration guides, and Highway Capacity Manual. Thus, the purpose of this study is to analyze the traffic operation performance and propose a methodology for calculating the capacity of mega elliptical roundabout and also the level of service by gap acceptance theory. Moreover, this research studied the influence of different values of truck ratios and also different values of a major highway speed on geometric design and traffic operation performance for mega elliptical roundabout. To validate the thoroughness of the proposed methodology, VISSIM simulations were conducted. This research will assist practitioners in determining the appropriate geometric design, assessing mega elliptical roundabout intersections, and making comparisons with other alternatives.


Author(s):  
Ioannis Kaparias ◽  
Rui Wang

Inspired by developments in urban planning, the concept of “shared space” has recently emerged as a way of creating a better public realm. This is achieved through a range of streetscape treatments aimed at asserting the function of streets as places by facilitating pedestrian movement and lowering vehicle traffic volumes and speeds. The characteristics of streets with elements of shared space point to the conjecture that traffic conditions and road user perceptions may be different to those on streets designed according to more conventional principles, and this is likely to have an impact on the quality of service. The aim of this paper is, therefore, to perform an analysis in relation to level of service (LOS) and to investigate how this may change as a result of the implementation of street layouts with elements of shared space. Using video data from the Exhibition Road site in London during periods before and after its conversion from a conventional dual carriageway to a layout featuring several elements of shared space, changes in relation to LOS for both vehicle traffic and pedestrians are investigated, by applying the corresponding methods from the 2010 Highway Capacity Manual. The results suggest that streets with elements of shared space provide a much improved pedestrian experience, as expressed by higher LOS ratings, but without compromising the quality of vehicle traffic flow, which, in fact, also sees slight improvements.


Author(s):  
Christopher J. Fasching

A particular component of two-way stop unsignalized intersection analyses as presented in the 1994 Highway Capacity Manual (HCM) is described. Specifically, advantages to minor movement capacity are evaluated where traffic flows overlap in multiple lanes. From vehicular arrival data collected by the author, it was determined that the current HCM can significantly underestimate the true potential capacity of minor movements that face multiple lanes of free-flow conflicting traffic. A modification to the HCM procedure is introduced in which an “effective” conflicting flow is calculated on the basis of “blockage” caused by individual lanes of traffic, assuming a Poisson count distribution. In every case examined (24 total), a more accurate potential capacity estimate resulted relative to that determined by the HCM procedure. The modification also resulted in a more accurate level of service in 8 of the 24 cases.


Author(s):  
Rod Troutbeck

The background to the Highway Capacity Manual (HCM) section on the analysis of the performance of roundabouts is discussed. The paper has two main objectives: to discuss the background of different techniques used to evaluate the level of service and to describe the method included in the HCM. The paper is in two parts. In the first part, the first objective is addressed and the parameters needed to predict both delay and capacity, which in turn are used to evaluate the level of service, are described. It is concluded that the gap acceptance approach is a reasonable one when the performance of roundabouts is predicted using data from uncongested sites. If there are a significant number of roundabouts with congested approaches, an empirical model should be used. It is also concluded that the results from one country cannot be immediately transferred to another. In the second part of the paper, the recommended practice included in HCM Chapter 10 is given.


Author(s):  
M. M. Minderhoud ◽  
L. Elefteriadou Elefteriadou

Weaving sections are a commonly adopted freeway facility both in the United States and in Europe. Knowledge about the capacity and level of service achievable on different types of weaving segments is necessary for the design and management of freeways. Guidelines such as those of the U.S. Highway Capacity Manual (HCM) provide capacity values for different weaving configuration types. The Dutch guidelines for the design of weaving segments are compared with those of the U.S. HCM. Differences between their respective approaches are identified, and a comparison of capacity values is conducted. It was found that there are large differences in capacity estimates for certain weaving configuration types. The results of a sensitivity analysis explain these differences in capacity values to a large extent. This analysis showed that it is important to consider the weaving proportions per leg. Currently, neither the HCM nor the Dutch approach considers different weaving flows per incoming leg. The introduction of an additional variable into the calculation procedure that takes into account the presence of asymmetrical weaving flows is recommended.


2018 ◽  
Vol 30 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Jelena Kajalić ◽  
Nikola Čelar ◽  
Stamenka Stanković

Level of service (LOS) is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error) is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual), Singapore model and modified BPR (the Bureau of Public Roads) function (Dowling - Skabardonis). The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m) is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km) the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.


2020 ◽  
Vol 3 (2) ◽  
pp. 111
Author(s):  
Hudan Rahmani

Pejalan kaki merupakan salah satu bentuk lalu lintas dalam sistem transportasi, dan sangat dominan di daerah perkotaan, Central District Business (CBD) atau lokasi  yang  memiliki  permintaan  tinggi  dengan  periode  pendek  contohnya  di Pusat Perbelanjaan. Lebar efektif adalah salah satu faktor utama dalam perancangan, perencanaan, maupun pengoperasian fasilitas-fasilitas transportasi. Hasil studi ini diharapkan dapat digunakan sebagai salah satu bahan acuan dalam kaitannya dengan fasilitas-fasilitas transportasi  di  Indonesia, mengingat  belum adanya pembahasan mengenai hal ini pada Manual Kapasitas Jalan Indonesia (MKJI), sedangkan hal  ini sudah dibahas dan  baru ada di Highway Capacity Manual (HCM-1985) dari Amerika. Pengambilan data dilakukan dengan menggunakan  alat  kamera  video,  pada  waktu  kondisi  arus  puncak  dan  arus normal, di lokasi Selasar pada Pasar Antasari untuk mengetahui Lebar Efektif Selasar  berdasarkan  konsep  Level  of  Service  (LOS)  dari  HCM  (1985)  dari Amerika. Dari hasil perhitungan didapatkan Lebar Efektif Selasar pada waktu puncak menjelang lebaran Idul Fitri sebesar 0,594 m dengan ruang 1,69 m2/ped dan untuk waktu normal setelah lebaran Idul Fitri sebesar 1,08 m dengan ruang 3,063 m2/ped. Kata kunci: Arus  pejalan  kaki,  selasar  lurus,  kecepatan,  kerapatan  atau ruang, lebar efektif.


Sign in / Sign up

Export Citation Format

Share Document