Incremental dynamic analysis of multi-storey concentrically braced steel frames

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1924-1931
Author(s):  
Claudio Bernuzzi ◽  
Davide Rodigari ◽  
Marco Simoncelli

2014 ◽  
Vol 680 ◽  
pp. 263-266
Author(s):  
Saber Moradi ◽  
M. Shahria Alam

Incremental Dynamic Analysis (IDA) is a technique to determine the overall seismic performance of structures under varied intensities of earthquakes. In this paper, the seismic performance of four-story steel braced frames equipped with superelastic Shape Memory Alloy (SMA) braces is assessed by performing IDA. The seismic response of SMA-braced frames was compared to that of corresponding Buckling-Restrained Braced Frames (BRBFs). Based on the results of this comparative study, the SMA-braced frames were generally effective in reducing maximum interstory drifts and permanent roof deformations. In addition, the SMA-braced frames demonstrated more uniform drift distribution over the height of the building. As the intensity of earthquake excitation increases, a higher response reduction can be expected for SMA-braced frames.


2005 ◽  
Vol 32 (3) ◽  
pp. 561-568 ◽  
Author(s):  
Robert Tremblay ◽  
Sina Merzouq ◽  
Carmen Izvernari ◽  
Krasimira Alexieva

The seismic forces and deformations obtained from the equivalent static force procedure and the dynamic analysis method proposed for the 2005 National Building Code of Canada are compared for 4-, 8-, 12-, and 16-storey buildings with structural mass irregularity. Setbacks resulting in 200% and 300% mass discontinuities located at 25%, 50%, or 75% of the building height were considered. The buildings are located in Vancouver and Montréal, and lateral loads are resisted by concentrically braced steel frames. The storey shear forces, overturning moments, and storey drifts obtained from static analysis were found to exceed the values determined from dynamic analysis for all irregular structures except at the base of "podium-type" buildings located at the Vancouver site.Key words: mass, static, dynamic, seismic, shear, overturning moment, deflections, braced steel frames.


2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2018 ◽  
Vol 22 (5) ◽  
pp. 1106-1120
Author(s):  
Zhi Zheng ◽  
Changhai Zhai ◽  
Xu Bao ◽  
Xiaolan Pan

This study serves to estimate the seismic capacity of the reinforced concrete containment building considering its bidirectional cyclic effect and variations of energy. The implementation of the capacity estimation has been performed by extending two well-known methods: nonlinear static pushover and incremental dynamic analysis. The displacement and dissipated energy demands are obtained from the static pushover analysis considering bidirectional cyclic effect. In total, 18 bidirectional earthquake intensity parameters are developed to perform the incremental dynamic analysis for the reinforced concrete containment building. Results show that the bidirectional static pushover analysis tends to decrease the capacity of the reinforced concrete containment building in comparison with unidirectional static pushover analysis. The 5% damped first-mode geometric mean spectral acceleration strongly correlates with the maximum top displacement of the containment building. The comparison of the incremental dynamic analysis and static pushover curves is employed to determine the seismic capacity of the reinforced concrete containment building. It is concluded that bidirectional static pushover and incremental dynamic analysis studies can be used in performance evaluation and capacity estimation of reinforced concrete containment buildings under bidirectional earthquake excitations.


Sign in / Sign up

Export Citation Format

Share Document