Optimization of Organic Process Chemistry

Author(s):  
John Mills
ChemInform ◽  
2003 ◽  
Vol 34 (27) ◽  
Author(s):  
John E. Mills

2014 ◽  
Vol 18 (3) ◽  
pp. 359-359 ◽  
Author(s):  
Will Watson
Keyword(s):  

Synlett ◽  
2021 ◽  
Vol 32 (02) ◽  
pp. 140-141
Author(s):  
Louis-Charles Campeau ◽  
Tomislav Rovis

obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date. Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a ­Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 459
Author(s):  
Zdeněk Krtouš ◽  
Lenka Hanyková ◽  
Ivan Krakovský ◽  
Daniil Nikitin ◽  
Pavel Pleskunov ◽  
...  

Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight “precursor”. As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.


2006 ◽  
Vol 106 (7) ◽  
pp. 2617-2650 ◽  
Author(s):  
Elizabeth R. Burkhardt ◽  
Karl Matos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document