Qualitative analysis of partial differential equations of the three-dimensional compressible boundary layer via spectral solutions

Author(s):  
A. Nastase
2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 710
Author(s):  
Michalis A. Xenos ◽  
Eugenia N. Petropoulou ◽  
Anastasios Siokis ◽  
U. S. Mahabaleshwar

The physical problem under consideration is the boundary layer problem of an incompressible, laminar flow, taking place over a flat plate in the presence of a pressure gradient and radiation. For the mathematical formulation of the problem, the partial differential equations of continuity, energy, and momentum are taken into consideration with the boundary layer simplifications. Using the dimensionless Falkner–Skan transformation, a nonlinear, nonhomogeneous, coupled system of partial differential equations (PDEs) is obtained, which is solved via the homotopy analysis method. The obtained analytical solution describes radiation and pressure gradient effects on the boundary layer flow. These analytical results reveal that the adverse or favorable pressure gradient influences the dimensionless velocity and the dimensionless temperature of the boundary layer. An adverse pressure gradient causes significant changes on the dimensionless wall shear parameter and the dimensionless wall heat-transfer parameter. Thermal radiation influences the thermal boundary layer. The analytical results are in very good agreement with the corresponding numerical ones obtained using a modification of the Keller’s-box method.


1977 ◽  
Vol 44 (1) ◽  
pp. 51-56 ◽  
Author(s):  
N. S. V. Kameswara Rao ◽  
Y. C. Das

A mixed method for three-dimensional elasto-dynamic problems has been formulated which gives a complete choice in prescribing the boundary conditions in terms of either stresses, or displacements, or partly stresses and partly displacements. The general expressions for the responses of the elastic body have been derived in the form of transcendental partial differential equations of a set of initial functions, which can be evaluated in terms of the prescribed boundary conditions. The method so-formulated has been illustrated by applying it to the theory of plates. Only plates subjected to antisymmetric loads have been considered for illustration. Some examples of free and forced vibration of plates have been presented. Results are compared with solutions from existing theories.


2000 ◽  
Vol 10 (05) ◽  
pp. 629-650 ◽  
Author(s):  
C. EBMEYER

In this paper the system of partial differential equations [Formula: see text] is studied, where e is the symmetrized gradient of u, and T has p-structure for some p<2 (e.g. div T is the p-Laplacian and p<2). Mixed boundary value conditions on a three-dimensional polyhedral domain are considered. Ws,p-regularity (s=3/2-ε) of the velocity u and Wr,p′-regularity of the pressure π are proven.


Author(s):  
A. A. Boretti

The paper presents a computer code for steady and unsteady, three-dimensional, compressible, turbulent, viscous flow simulations. The mathematical model is based on the Favre-averaged Navier-Stokes conservation equations, closed by a statistical model of turbulence. Turbulence effects are represented by using a low Reynolds number K-ω model. The numerical model makes use of a finite difference approximation in generalized coordinates for space discretization. The solution of time-dependent, three-dimensional, non-homogeneous, partial differential equations is obtained by solving, in a prescribed, symmetric pattern, three time-dependent, one-dimensional, homogeneous partial differential equations, representing convection and diffusion along each generalized coordinate direction, and one ordinary differential equation, representing generation and destruction. An explicit, multi-step, dissipative, Runge-Kutta scheme is finally adopted for time discretization. The code is applied to simulate the flow through a linear cascade of turbine rotor blades, where detailed experimental data are available. Blade aerodynamic and heat transfer are computed, at variable Reynolds and Mach numbers and turbulence levels, and compared with experimental data. While the aerodynamic prediction is relatively unaffected by the properties of both mathematical and numerical models, the heat transfer prediction proves to be extremely sensitive to models details. Low Reynolds number K-ω turbulence models theoretically reproduce laminar, turbulent and transitional boundary layers. However, their practical use in a Navier-Stokes code does not allow to entirely capture the effects of turbulence intensity and Mach and Reynolds numbers on blade heat transfer.


Author(s):  
Vusi Mpendulo Magagula

In this work, a novel approach for solving systems of nonsimilar boundary layer equations over a large time domain is presented. The method is a multidomain bivariate spectral local linearisation method (MD-BSLLM), Legendre-Gauss-Lobatto grid points, a local linearisation technique, and the spectral collocation method to approximate functions defined as bivariate Lagrange interpolation. The method is developed for a general system of n nonlinear partial differential equations. The use of the MD-BSLLM is demonstrated by solving a system of nonlinear partial differential equations that describe a class of nonsimilar boundary layer equations. Numerical experiments are conducted to show applicability and accuracy of the method. Grid independence tests establish the accuracy, convergence, and validity of the method. The solution for the limiting case is used to validate the accuracy of the MD-BSLLM. The proposed numerical method performs better than some existing numerical methods for solving a class of nonsimilar boundary layer equations over large time domains since it converges faster and uses few grid points to achieve accurate results. The proposed method uses minimal computation time and its accuracy does not deteriorate with an increase in time.


Sign in / Sign up

Export Citation Format

Share Document