Investigation into the Nature and Extent of Microbial Contamination Present in a Commercial Metalworking Fluid

Author(s):  
Keith M. Rinkus ◽  
Wei Lin ◽  
Alka Jha ◽  
Brian E. Reed
2014 ◽  
Vol 966-967 ◽  
pp. 357-364 ◽  
Author(s):  
Marvin Redetzky ◽  
Andreas Rabenstein ◽  
B. Palmowski ◽  
Ekkard Brinksmeier

Most of the several billion liters of metalworking fluid (MWF) used worldwide and annually are water-based and thus prone to a microbial contamination. The microbial growth leads to a deterioration and therefore to a loss of quality and technical performance. In most cases, biocides, which pose a potential risk to health and environment, are used to reduce the microbial load. To avoid these limitations, the paradigm shift of using microorganisms in a positive way in a manufacturing process as a lubricant is investigated in this paper. Some microorganisms are able to synthesize equivalent MWF components like e.g. fatty acids or sulfur compounds. Due to this fact, it is possible to create a regenerative system on a microbiological basis for the substitution of mineral oil containing MWF components. To demonstrate the lubrication potential of bacteria, preliminary investigations were conducted on a Brugger-tribotester. Against this background, the approach presented here intends to investigate the lubrication properties of special microorganisms and the influence of the microbial cell counts on the lubrication behavior respectively. The results of the tribological tests show that the microbial-suspensions exhibit Brugger-values as high as highly concentrated conventional MWF and indicate the potential to replace these respective components.


1999 ◽  
Author(s):  
G. Gruetzmacher ◽  
J. Fox ◽  
H. Anderson ◽  
T. Moen ◽  
J. Lupo ◽  
...  

2018 ◽  
Vol 6 (6) ◽  
Author(s):  
Francisco Bruno Monte Gomes ◽  
Suely Torquato Ribeiro ◽  
Marcus Vinicius Freire Andrade

2005 ◽  
Vol 34 (1) ◽  
pp. 5-11 ◽  
Author(s):  
L.A. Castillo A. ◽  
L. Mészáros ◽  
F. Kiss

2020 ◽  
Vol 54 (6) ◽  
pp. 410-416
Author(s):  
Joyce M. Hansen ◽  
Scott Weiss ◽  
Terra A. Kremer ◽  
Myrelis Aguilar ◽  
Gerald McDonnell

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged healthcare providers in maintaining the supply of critical personal protective equipment, including single-use respirators and surgical masks. Single-use respirators and surgical masks can reduce risks from the inhalation of airborne particles and microbial contamination. The recent high-volume demand for single-use respirators and surgical masks has resulted in many healthcare facilities considering processing to address critical shortages. The dry heat process of 80°C (176°F) for two hours (120 min) has been confirmed to be an appropriate method for single-use respirator and surgical mask processing.


Sign in / Sign up

Export Citation Format

Share Document