Microorganisms as a Replacement for Metal Working Fluids

2014 ◽  
Vol 966-967 ◽  
pp. 357-364 ◽  
Author(s):  
Marvin Redetzky ◽  
Andreas Rabenstein ◽  
B. Palmowski ◽  
Ekkard Brinksmeier

Most of the several billion liters of metalworking fluid (MWF) used worldwide and annually are water-based and thus prone to a microbial contamination. The microbial growth leads to a deterioration and therefore to a loss of quality and technical performance. In most cases, biocides, which pose a potential risk to health and environment, are used to reduce the microbial load. To avoid these limitations, the paradigm shift of using microorganisms in a positive way in a manufacturing process as a lubricant is investigated in this paper. Some microorganisms are able to synthesize equivalent MWF components like e.g. fatty acids or sulfur compounds. Due to this fact, it is possible to create a regenerative system on a microbiological basis for the substitution of mineral oil containing MWF components. To demonstrate the lubrication potential of bacteria, preliminary investigations were conducted on a Brugger-tribotester. Against this background, the approach presented here intends to investigate the lubrication properties of special microorganisms and the influence of the microbial cell counts on the lubrication behavior respectively. The results of the tribological tests show that the microbial-suspensions exhibit Brugger-values as high as highly concentrated conventional MWF and indicate the potential to replace these respective components.

2015 ◽  
Vol 794 ◽  
pp. 285-291
Author(s):  
Marvin Redetzky ◽  
Andreas Rabenstein ◽  
Benedikt Seidel ◽  
Ekkard Brinksmeier

Many machining operations e.g. turning, milling or grinding are dependent on the application of water-based metalworking fluids (MWF) which contribute significantly to their high level of performance. MWF in-use are exposed to a microbial contamination, which leads to a deterioration of water-based MWF components and can cause a premature failure of the whole coolant system. Expensive monitoring and the addition of biocides are needed to maintain the MWF quality and to reduce the microbial load, regardless of the potential risk for health and environment. To overcome these limitations, the paradigm shift of using microorganisms as a replacement for conventional MWF is investigated in this paper. Microbial cell components and some microbial inclusions are comparable to conventional MWF components like e.g. fatty acids or sulfur compounds. Due to this fact, it is possible to create a regenerative system on a microbiological basis for the substitution of conventional MWF components. In preliminary tribological investigations the basic lubrication properties of microorganisms and their potential as a replacement for conventional MWF were shown. The presented approach intends to investigate the influence of microbial cell counts, cells size and extracellular polymeric substances (EPS) on the lubrication behavior respectively. The results of the tribological tests show that especially microorganisms with a big cell volume or a high EPS productivity exhibit superior Brugger-values (up to 174%) compared to a highly concentrated conventional MWF (emulsion 10%) and indicate the great potential of microorganisms as a replacement for conventional MWF.


1991 ◽  
Vol 27 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Michael Sandin ◽  
Inger Mattsby-Baltzer ◽  
Lars Edebo

2018 ◽  
Vol 162 ◽  
pp. 05011
Author(s):  
Ezzat Hamed ◽  
Nagy Saker ◽  
Shawky ElShazly ◽  
Tarek Fahmy ◽  
Yasser Aboulazm

Metalworking fluids, the class of lubricants most susceptible to microbial attack, metalworking fluid must also be safe for human use and exposure, The failure of the fluid to perform any of its functions has the potential to result in operational problems, process shutdowns, decreased tool life, and product-quality issues, all of which will result in increased costs. Perhaps one of the most common and controllable complications is microbial degradation specially standing from the fact that metalworking fluids contain the nutrients that can permit unchecked microbial growth. In this work we prepared Antimicrobial metal working fluid additive which fulfills the criteria of successful local production in Egypt, as the commercial availability of starting components, effectiveness of the prepared additive, easiness of addition and homogenization with other MWF additives, good environmental profile and biodegradability. The effectiveness of the prepared additive was evaluated by standard method ASTM E645-97 test. It was revealed that; the formic acid which condensate with the polyethylene glycol 400 and ethylene glycol had excellent antibacterial action, it could also greatly reduce growth of bacteria.


2011 ◽  
Vol 239-242 ◽  
pp. 1359-1363
Author(s):  
Chao Hui Zhang ◽  
Si Si Liu ◽  
Yue Tao Sun ◽  
Jun Ming Liu

Aqueous solutions have found broad usages as lubricants, in conjunction with other possible utilizations, such as in metal working and other industries. Due to the inferior lubricity, functional additives are needed to improve their tribological performances among which aqueous surfactants are exclusively included. The film forming property of aqueous solution with polyethoxylated ether added (PEOE) is measured, taking consideration of the influences of the temperature and the concentration. The addition of PEOEs into aqueous solutions will largely increase the film forming capacity. But the concentration has only a minor influence on the lubrication property of the aqueous solutions with PEOEs. The cloud point will strongly alter the film forming characteristics.


2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Claire Zoellner ◽  
Mohammad Abdullah Al-Mamun ◽  
Yrjo Grohn ◽  
Peter Jackson ◽  
Randy Worobo

ABSTRACTFresh produce supply chains present variable and diverse conditions that are relevant to food quality and safety because they may favor microbial growth and survival following contamination. This study presents the development of a simulation and visualization framework to model microbial dynamics on fresh produce moving through postharvest supply chain processes. The postharvest supply chain with microbial travelers (PSCMT) tool provides a modular process modeling approach and graphical user interface to visualize microbial populations and evaluate practices specific to any fresh produce supply chain. The resulting modeling tool was validated with empirical data from an observed tomato supply chain from Mexico to the United States, including the packinghouse, distribution center, and supermarket locations, as an illustrative case study. Due to data limitations, a model-fitting exercise was conducted to demonstrate the calibration of model parameter ranges for microbial indicator populations, i.e., mesophilic aerobic microorganisms (quantified by aerobic plate count and here termed APC) and total coliforms (TC). Exploration and analysis of the parameter space refined appropriate parameter ranges and revealed influential parameters for supermarket indicator microorganism levels on tomatoes. Partial rank correlation coefficient analysis determined that APC levels in supermarkets were most influenced by removal due to spray water washing and microbial growth on the tomato surface at postharvest locations, while TC levels were most influenced by growth on the tomato surface at postharvest locations. Overall, this detailed mechanistic dynamic model of microbial behavior is a unique modeling tool that complements empirical data and visualizes how postharvest supply chain practices influence the fate of microbial contamination on fresh produce.IMPORTANCEPreventing the contamination of fresh produce with foodborne pathogens present in the environment during production and postharvest handling is an important food safety goal. Since studying foodborne pathogens in the environment is a complex and costly endeavor, computer simulation models can help to understand and visualize microorganism behavior resulting from supply chain activities. The postharvest supply chain with microbial travelers (PSCMT) model, presented here, provides a unique tool for postharvest supply chain simulations to evaluate microbial contamination. The tool was validated through modeling an observed tomato supply chain. Visualization of dynamic contamination levels from harvest to the supermarket and analysis of the model parameters highlighted critical points where intervention may prevent microbial levels sufficient to cause foodborne illness. The PSCMT model framework and simulation results support ongoing postharvest research and interventions to improve understanding and control of fresh produce contamination.


2018 ◽  
Vol 70 (9) ◽  
pp. 1569-1579 ◽  
Author(s):  
M.R. Noor El-Din ◽  
Marwa R. Mishrif ◽  
Satish V. Kailas ◽  
Suvin P.S. ◽  
Jagadeesh K. Mannekote

PurposeThis paper aims to formulate a new metal working fluid (MWF) composition including some eco-friendly emulsifiers, corrosion inhibitor, biocide, and non- edible vegetable oil (castor oil) as the base oil. To achieve this aim, five MWFs with different hydrophilic–lipophilic balance (HLB) value as 10, 9.5, 9, 8.5 and 8 were prepared to identify the optimum HLB value that gives a highly stable oil-in-water emulsion. The performance of castor oil based MWF was evaluated using tool chip tribometer and drill dynamometer. The surface morphology of steel disc and friction pin was performed using scanning electron microscope (SEM) and 3D profilometer. The results revealed that the use of the prepared cutting fluid (E1) caused the cutting force to decrease from 500 N for dry high-speed steel sample to 280N, while the same value for a commercial cutting fluid (COM) was recorded as 340 N at drilling speed and cutting feed force as 1120 rpm and 4 mm/min., respectively.Design/methodology/approachA castor oil-based metalworking fluid was prepared using nonionic surfactants. The composition of the metalworking fluid was further optimized by adding performance-enhancing additives. The performance of castor oil based MWF was analyzed using Tool chip tribometer and Drill dynamometer. The surface morphology of steel ball and a disc was done using 3D profilometer and SEM.FindingsStudies revealed that castor oil-based MWF having Monoethanolamine (MEA) as corrosion inhibitor was found to be highly stable. The drilling dynamometer and tool chip tribometer studies showed that castor oil-based MWF performance was comparable to that of commercial MWF.Research limitations/implicationsThis study aims to explore the performance of the castor oil based metalworking fluid (MWF) using tool chip tribometer and drill dynamometer.Practical implicationsThe conventional MWFs are petroleum derives and are unsustainable. Use of non-edible plant-based oils for preparing the MWF will not only be conserved environment but also add value addition to agricultural crops.Social implicationsThe social Implications is aiming to decrease the environmental impact that results from the using of mineral cutting fluids.Originality/valueThe originality of this work is to replace the mineral oil and synthetic oil based cutting fluids with more eco-friendly alternatives one. In addition, the investigation will focus on developing functional additives required for cutting fluids which are environmentally benign.


Author(s):  
J. de Vicente ◽  
H. A. Spikes ◽  
J. R. Stokes

The lubrication properties of a series of multiphase water-based fluids of complex rheology and microstructure, including o/w emulsions, have been studied in a rolling-sliding steel ball-on-elastomer flat contact. The results show that friction curves of Newtonian fluids made over a wide range of entrainment speeds and viscosity can be used to identify the prevailing mechanisms of lubrication for more complex fluids and, for emulsions, to show the predominant film-forming phase.


Sign in / Sign up

Export Citation Format

Share Document