Thermo-Mechanical Fatigue Tests of Coatings for Turbine Blades

2020 ◽  
pp. 157-169
Author(s):  
Yu. A. Tamarin ◽  
V. G. Sundyrin ◽  
N. G. Bychkov
2007 ◽  
Vol 333 ◽  
pp. 147-154 ◽  
Author(s):  
Marion Bartsch ◽  
Bernd Baufeld ◽  
S. Dalkilic ◽  
Iulian Mircea ◽  
K. Lambrinou ◽  
...  

Strategies for time-economic lifetime assessment of thermal barrier coatings (TBC) in service are described and discussed on the basis of experimental results, achieved on material systems with coatings applied by electron beam physical vapour deposition. Service cycles for gas turbine blades have been simulated on specimens in thermo-mechanical fatigue tests, accelerating the fatigue processes by an increase of load frequency. Time dependent changes in the material system were imposed by a separate ageing, where the samples were pre-oxidized prior to the fatigue test. Results of thermo-mechanical fatigue tests on pre-aged and as-coated specimens gave evidence of interaction between fatigue and ageing processes. An alternative approach is used, which is focused on the evolution of a failure relevant damage parameter in the TBC system. The interfacial fracture toughness was selected as a damage parameter, since one important failure mode of TBCs is the spallation near the interface between the metal and the ceramic. Fracture mechanical experiments based on indentation methods have been evaluated for monitoring the evolution of the interfacial fracture toughness as a function of ageing time. It was found that the test results were influenced by both changes of the interface (which is critical in service) and changes in the surrounding material.


2020 ◽  
Vol 28 ◽  
pp. 1184-1192
Author(s):  
Anja Gosch ◽  
Jutta Geier ◽  
Florian Arbeiter ◽  
Michael Berer ◽  
Gerald Pinter

2021 ◽  
Vol 13 (10) ◽  
pp. 5675
Author(s):  
Josip Brnic ◽  
Marino Brcic ◽  
Sebastian Balos ◽  
Goran Vukelic ◽  
Sanjin Krscanski ◽  
...  

Knowledge of the properties and behavior of materials under certain working conditions is the basis for the selection of the proper material for the design of a new structure. This paper deals with experimental investigations of the mechanical properties of unalloyed high quality steel S235JRC + C (1.0122) and its behavior under conditions of high temperatures, creep and mechanical fatigue. The response of the material at high temperatures (20–700 °C) is shown in the form of engineering stress-strain diagrams while that at creep behavior (400–600 °C) is shown in the form of creep curves. Furthermore, based on uniaxial fully reversed mechanical fatigue tests (R=−1), a stress-life (S-N) fatigue diagram has been constructed and the fatigue (endurance) limit of the material is calculated The experimentally determined value of tensile strength at room temperature is 534 MPa. The calculated value of the fatigue limit, also at room temperature, using the modified staircase method and based on the mechanical fatigue tests data, is 202 MPa. With regard to creep resistance, steel 1.0122 can be considered creep-resistant only at a temperature of 400 °C and at an applied stress not exceeding 50% of the yield strength corresponding to this temperature.


1976 ◽  
Vol 8 (6) ◽  
pp. 643-647
Author(s):  
B. F. Balashov ◽  
A. N. Petukhov ◽  
A. N. Arkhipov ◽  
B. V. Volodenko

1990 ◽  
Vol 112 (1) ◽  
pp. 68-79 ◽  
Author(s):  
D. A. Boismier ◽  
Huseyin Sehitoglu

Isothermal fatigue tests, out-of-phase and in-phase thermo-mechanical fatigue tests were performed on Mar-M247 nickel-based superalloy. The experiments were conducted in the temperature range 500°C to 871°C. Results indicate that the lives differ with strain-temperature phasing and with strain rate. The results of out-of-phase thermo-mechanical tests correspond well with strain-life data of isothermal tests conducted at the peak temperature (871°C). However, the in-phase thermo-mechanical results differed depending on the strain amplitude. Significant surface and crack tip oxidation and gamma prime depletion has been observed based on metallographic and Auger Spectroscopic analyses. These changes were measured as a function of time. The environment induced changes significantly influenced the fatigue lives in isothermal and out-of-phase thermo-mechanical fatigue cases. In these cases transgranular cracking was observed. Grain boundary crack nucleation and grain boundary crack growth dominated the in-phase thermo-mechanical fatigue cases. Based on these observations the requirements for a life prediction model are outlined. The life prediction model and the predictions are given in Part 2 of this paper.


2018 ◽  
Vol 165 ◽  
pp. 07005
Author(s):  
Wei Sai ◽  
Gin Boay Chai

A methodology to study the fatigue of a wind turbine blade in a 10KW small wind turbine is proposed in this paper. Two working conditions (namely normal fatigue operation condition and extreme wind condition) are considered based on IEC61400-2. The maximum load calculated from both cases were used as a reference to perform material sample fatigue study. Fiber-metal laminate – GLARE 3/2 with a centre 1mm notch on the external aluminium layers was modelled based on fracture mechanics approach to calculate the stress intensity factor and fatigue crack growth rate at maximum applied stress of 240Mpa. GLARE panel fabrication and tensile tests were included. The fatigue tests were performed on unnotched samples with stress range from 80Mpa to 300Mpa and plotted into S-N curve.


Author(s):  
Roland Mu¨cke ◽  
Klaus Rau

Modern heavy-duty gas turbines operate under hot gas temperatures that are much higher than the temperature capability of nickel superalloys. For that reason, advanced cooling technology is applied for reducing the metal temperature to an acceptable level. Highly cooled components, however, are characterised by large thermal gradients resulting in inhomogeneous temperature fields and complex thermo-mechanical load conditions. In particular, the different rates of stress relaxation due to the different metal temperatures on hot gas and cooling air exposed surfaces lead to load redistributions in cooled structures, which have to be considered in the lifetime prediction methodology. In this context, the paper describes Coupled Thermo-Mechanical Fatigue (CTMF) tests for simultaneously simulating load conditions on hot and cold surfaces of cooled turbine parts, Refs [1, 2]. In contrary to standard Thermo-Mechanical Fatigue (TMF) testing methods, CTMF tests involve the interaction between hot and cold regions of the parts and thus more closely simulates the material behaviour in cooled gas turbine structures. The paper describes the methodology of CTMF tests and their application to typical load conditions in cooled gas turbine parts. Experimental results are compared with numerical predictions showing the advantages of the proposed testing method.


Author(s):  
C. H. Richter ◽  
U. Krupp ◽  
M. Zeißig ◽  
G. Telljohann

Slender turbine blades are susceptible to excitation. Resulting vibrations stress the blade's fixture to the rotor or stator. In this paper, high cycle fatigue at the edge of contact (EOC) between blade and rotor/stator of such fixtures is investigated both experimentally and numerically. Plasticity in the contact zone and its effects on, e.g., contact tractions, fatigue determinative quantities, and fatigue itself are shown to be of considerable relevance. The accuracy of the finite element analysis (FEA) is demonstrated by comparing the predicted utilizations and slip region widths with data gained from tests. For the evaluation of EOC fatigue, tests on simple notched specimens provide the limit data. Predictions on the utilization are made for the EOC of a dovetail setup. Tests with this setup provide the experimental fatigue limit to be compared to. The comparisons carried out show a good agreement between the experimental results and the plasticity-based calculations of the demonstrated approach.


2006 ◽  
Vol 321-323 ◽  
pp. 509-512 ◽  
Author(s):  
Jung Seob Hyun ◽  
Gee Wook Song ◽  
Young Shin Lee

A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue (TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. High temperature out-of-phase and in-phase TMF experiments in strain control were performed on superalloy materials. Temperature interval of 450-850 was applied to thermo-mechanical fatigue tests. The stress-strain response and the life cycle of the material were measured during the test. The mechanisms of TMF damage is discussed based on the microstructural evolution during TMF. The plastic strain energy based life pediction models were applied to the stress-strain history effect on the thermo-mechanical fatigue lives.


Sign in / Sign up

Export Citation Format

Share Document