Neuronal Dynamics and Evolutionary Learning

2019 ◽  
pp. 169-189
Author(s):  
Michael Conrad ◽  
Roberto R. Kampfner ◽  
Kevin G. Kirby
2012 ◽  
Vol 10 (3) ◽  
pp. 192-201 ◽  
Author(s):  
Ricardo de A. Araújo ◽  
Adriano L. I. Oliveira ◽  
Sérgio Soares ◽  
Silvio Meira

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 28
Author(s):  
Anna V. Kalyuzhnaya ◽  
Nikolay O. Nikitin ◽  
Alexander Hvatov ◽  
Mikhail Maslyaev ◽  
Mikhail Yachmenkov ◽  
...  

In this paper, we describe the concept of generative design approach applied to the automated evolutionary learning of mathematical models in a computationally efficient way. To formalize the problems of models’ design and co-design, the generalized formulation of the modeling workflow is proposed. A parallelized evolutionary learning approach for the identification of model structure is described for the equation-based model and composite machine learning models. Moreover, the involvement of the performance models in the design process is analyzed. A set of experiments with various models and computational resources is conducted to verify different aspects of the proposed approach.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 155
Author(s):  
Bruno Cessac ◽  
Ignacio Ampuero ◽  
Rodrigo Cofré

We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allow us to predict the influence of a weak amplitude time dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how the linear response is explicitly related to the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike train statistics. We illustrate our results with numerical simulations performed over a discrete time integrate and fire model.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 55871-55878
Author(s):  
Yoshinori Sunaga ◽  
Yasumi Ohta ◽  
Takaaki E Murakami ◽  
Yasemin M. Akay ◽  
Jun Ohta ◽  
...  

Author(s):  
Clemens Buchen ◽  
Alberto Palermo

AbstractWe relax the common assumption of homogeneous beliefs in principal-agent relationships with adverse selection. Principals are competitors in the product market and write contracts also on the base of an expected aggregate. The model is a version of a cobweb model. In an evolutionary learning set-up, which is imitative, principals can have different beliefs about the distribution of agents’ types in the population. The resulting nonlinear dynamic system is studied. Convergence to a uniform belief depends on the relative size of the bias in beliefs.


1989 ◽  
Vol 1 (3) ◽  
pp. 201-222 ◽  
Author(s):  
Adam N. Mamelak ◽  
J. Allan Hobson

Bizarreness is a cognitive feature common to REM sleep dreams, which can be easily measured. Because bizarreness is highly specific to dreaming, we propose that it is most likely brought about by changes in neuronal activity that are specific to REM sleep. At the level of the dream plot, bizarreness can be defined as either discontinuity or incongruity. In addition, the dreamer's thoughts about the plot may be logically deficient. We propose that dream bizarreness is the cognitive concomitant of two kinds of changes in neuronal dynamics during REM sleep. One is the disinhibition of forebrain networks caused by the withdrawal of the modulatory influences of norepinephrine (NE) and serotonin (5HT) in REM sleep, secondary to cessation of firing of locus coeruleus and dorsal raphe neurons. This aminergic demodulation can be mathematically modeled as a shift toward increased error at the outputs from neural networks, and these errors might be represented cognitively as incongruities and/or discontinuities. We also consider the possibility that discontinuities are the cognitive concomitant of sudden bifurcations or “jumps” in the responses of forebrain neuronal networks. These bifurcations are caused by phasic discharge of pontogeniculooccipital (PGO) neurons during REM sleep, providing a source of cholinergic modulation to the forebrain which could evoke unpredictable network responses. When phasic PGO activity stops, the resultant activity in the brain may be wholly unrelated to patterns of activity dominant before such phasic stimulation began. Mathematically such sudden shifts from one pattern of activity to a second, unrelated one is called a bifurcation. We propose that the neuronal bifurcations brought about by PGO activity might be represented cognitively as bizarre discontinuities of dream plot. We regard these proposals as preliminary attempts to model the relationship between dream cognition and REM sleep neurophysiology. This neurophysiological model of dream bizarreness may also prove useful in understanding the contributions of REM sleep to the developmental and experiential plasticity of the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document