Smart Power Distribution, the Heart of Smart Grid

2022 ◽  
pp. 195-238
Author(s):  
Radian Belu
2012 ◽  
Vol 614-615 ◽  
pp. 1766-1770
Author(s):  
Yang Yang Xi ◽  
Yu Feng Yang

With the development of smart grid, smart power distribution and utilization park (hereinafter referred to as Park) is also accelerating the building. Distributed energy storage system (DESS)as important energy system of Park, the development has an important impact on the construction of Park. This article briefly introduces both of DESS and Park, focuses on the use of DESS in Park and analyzes the deficiencies in the use of DESS at home and abroad.


Author(s):  
Michele Garau ◽  
Emilio Ghiani ◽  
Gianni Celli ◽  
Fabrizio Pilo ◽  
Sergio Corti

Simulation tools capturing the interactions of communication and electrical system operation represent a powerful support for fully assessing the potential benefits and impacts of ICT in future smart power distribution network. A strong interest is upon the possibility of exploiting the last generation communication systems for supporting the transition of distribution network towards a smart grid scenario. Having in mind the above, the authors propose a numerical co-simulation tool useful to thoroughly understand the impact of the communication networks on the performance of whole power system dynamics. The co-simulation tool has been purposely developed to simulate the highly time-critical smart grid application of fault management and network reconfiguration and permits reproducing and evaluating the behavior of the public mobile telecommunication system 4G Long Term Evolution (LTE), as communication technology for smart grid applications. Results of the paper demonstrates that LTE provides good performances for supporting the data communication required to perform fault location, extinction and a subsequent network reconfiguration in smart power distribution networks.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Friederike Wenderoth ◽  
Elisabeth Drayer ◽  
Robert Schmoll ◽  
Michael Niedermeier ◽  
Martin Braun

Abstract Historically, the power distribution grid was a passive system with limited control capabilities. Due to its increasing digitalization, this paradigm has shifted: the passive architecture of the power system itself, which includes cables, lines, and transformers, is extended by a communication infrastructure to become an active distribution grid. This transformation to an active system results from control capabilities that combine the communication and the physical components of the grid. It aims at optimizing, securing, enhancing, or facilitating the power system operation. The combination of power system, communication, and control capabilities is also referred to as a “smart grid”. A multitude of different architectures exist to realize such integrated systems. They are often labeled with descriptive terms such as “distributed,” “decentralized,” “local,” or “central." However, the actual meaning of these terms varies considerably within the research community.This paper illustrates the conflicting uses of prominent classification terms for the description of smart grid architectures. One source of this inconsistency is that the development of such interconnected systems is not only in the hands of classic power engineering but requires input from neighboring research disciplines such as control theory and automation, information and telecommunication technology, and electronics. This impedes a clear classification of smart grid solutions. Furthermore, this paper proposes a set of well-defined operation architectures specialized for use in power systems. Based on these architectures, this paper defines clear classifiers for the assessment of smart grid solutions. This allows the structural classification and comparison between different smart grid solutions and promotes a mutual understanding between the research disciplines. This paper presents revised parts of Chapters 4.2 and 5.2 of the dissertation of Drayer (Resilient Operation of Distribution Grids with Distributed-Hierarchical Architecture. Energy Management and Power System Operation, vol. 6, 2018).


The concept of smart grid to transform the old power grid into a smart and intelligent electric power distribution system is, currently, a hot research topic. Smart grid offers the merging of electrical power engineering technologies with network communications. Game theory has featured as an interesting technique, adopted by many researchers, to establish effective smart grid communications. The use of game theory has offered solutions to various decision-making problems, ranging from distributed load management to micro storage management in smart grid. Interestingly, different researchers have different objectives or problem scopes for adopting game theory in smart grid. This chapter explores the game-based approach.


Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


2022 ◽  
pp. 1335-1359
Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


2022 ◽  
pp. 1028-1046
Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


Sign in / Sign up

Export Citation Format

Share Document