Nanostructured Materials and Composites for Renewable Energy

Author(s):  
Idowu David Ibrahim ◽  
Chewe Kambole ◽  
Azunna Agwo Eze ◽  
Adeyemi Oluwaseun Adeboje ◽  
Emmanuel Rotimi Sadiku ◽  
...  
2021 ◽  
Vol 11 (23) ◽  
pp. 11324
Author(s):  
Rorisang Mabindisa ◽  
Kevin Tambwe ◽  
Lulama Mciteka ◽  
Natasha Ross

Meeting our current energy demands requires a reliable and efficient renewable energy source that will bring balance between power generation and energy consumption. Organic photovoltaic cells (OPVs), perovskite solar cells and dye-sensitized solar cells (DSSCs) are among the next-generation technologies that are progressing as potential sustainable renewable energy sources. Since the discoveries of highly conductive organic charge-transfer compounds in the 1950s, organic semiconductors have captured attention. Organic photovoltaic solar cells possess key characteristics ideal for emerging next-generation technologies such as being nontoxic, abundant, an inexpensive nanomaterial with ease of production, including production under ambient conditions. In this review article, we discuss recent methods developed towards improving the stability and average efficiency of nanostructured materials in OPVs aimed at sustainable agriculture and improve land-use efficiency. A comprehensive overview on developing cost-effective and user-friendly organic solar cells to contribute towards improved environmental stability is provided. We also summarize recent advances in the synthetic methods used to produce nanostructured active absorber layers of OPVs with improved efficiencies to supply the energy required towards ending poverty and protecting the planet.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Polymer News ◽  
2005 ◽  
Vol 30 (7) ◽  
pp. 214-216
Author(s):  
G. Carotenuto

Polymer News ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 77-81
Author(s):  
G. Carotenuto

Polymer News ◽  
2004 ◽  
Vol 29 (1) ◽  
pp. 17-18
Author(s):  
G. Carotenuto

IEE Review ◽  
1991 ◽  
Vol 37 (4) ◽  
pp. 152
Author(s):  
Kenneth Spring

2000 ◽  
Vol 14 (5) ◽  
pp. 244-244
Keyword(s):  

2014 ◽  
pp. 92-105
Author(s):  
P. Bezrukikh ◽  
P. Bezrukikh (Jr.)

The article analyzes the dynamics of consumption of primary energy and production of electrical energy in the world for 1973-2012 and the volume of renewable energy. It is shown that in the crisis year of 20 0 9 there was a significant reduction in primary energy consumption and production of electrical energy. At the same time, renewable energy has developed rapidly, well above the rate of the world economy growth. The development of renewable energy is one of the most effective ways out of the crisis, taking into account its production regime, energy, environmental, social and economic efficiency. The forecast for the development of renewable energy for the period up to 2020, compiled by the IEA, is analyzed. It is shown that its assessment rates are conservative; the authors justify higher rates of development of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document