Preparing Aqueous, Biological Solutions That Contain One Solute

2021 ◽  
pp. 153-186
Author(s):  
Lisa A. Seidman
Keyword(s):  
2005 ◽  
Vol 53 (S 3) ◽  
Author(s):  
N Reiss ◽  
R Schistek ◽  
F Unger ◽  
R Körfer

Author(s):  
Alice C. Hill ◽  
Leonardo Martinez-Diaz

Even under the most optimistic scenarios, significant global climate change is now inevitable. Although we cannot tell with certainty how much average global temperatures will rise, we do know that the warming we have experienced to date has already caused significant losses, and that the failure to prepare for the consequences of further warming may prove to be staggering. This book does not dwell on overhyped descriptions of apocalyptic climate scenarios, nor does it travel down well-trodden paths surrounding the politics of reducing carbon emissions. Instead, it starts with two central facts: there will be future climate impacts, and we can make changes now to buffer their effects. While squarely confronting the scale of the risks we face, this pragmatic guide focuses on solutions—some gradual and some more revolutionary—currently being deployed around the globe. Each chapter presents a thematic lesson for decision-makers and engaged citizens to consider, outlining replicable successes and identifying provocative recommendations to strengthen climate resilience. Between discussions of ideas as wide-ranging as managed retreat from coastal hot zones to biological solutions for resurgent climate-related disease threats, the authors draw on their personal experiences to tell behind-the-scenes stories of what it really takes to advance progress on these issues. The narrative is dotted with stories of on-the-ground citizenry, from small-town mayors and bankers to generals and engineers, who are chipping away at financial disincentives and bureaucratic hurdles to prepare for life on a warmer planet.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 545
Author(s):  
Yi Zhang ◽  
Wei Jiang ◽  
Dezhi Feng ◽  
Chenguang Wang ◽  
Yi Xu ◽  
...  

2D molybdenum disulfide (MoS2)-based thin film transistors are widely used in biosensing, and many efforts have been made to improve the detection limit and linear range. However, in addition to the complexity of device technology and biological modification, the compatibility of the physical device with biological solutions and device reusability have rarely been considered. Herein, we designed and synthesized an array of MoS2 by employing a simple-patterned chemical vapor deposition growth method and meanwhile exploited a one-step biomodification in a sensing pad based on DNA tetrahedron probes to form a bio-separated sensing part. This solves the signal interference, solution erosion, and instability of semiconductor-based biosensors after contacting biological solutions, and also allows physical devices to be reused. Furthermore, the gate-free detection structure that we first proposed for DNA (BRCA1) detection demonstrates ultrasensitive detection over a broad range of 1 fM to 1 μM with a good linear response of R2 = 0.98. Our findings provide a practical solution for high-performance, low-cost, biocompatible, reusable, and bio-separated biosensor platforms.


Author(s):  
Chloe Campbell

The application of eugenics to a new environment raises questions about the individuals who served as conduits for these ideas. This article discusses eugenics as a serious preoccupation within the medical profession in Kenya. It is concerned with native development and welfare, issues that were dismissed by more politically extreme settlers for whom African welfare was a waste of resources. It states that eugenics and its application to race and intelligence took root in the Kenyan medical profession because it promised biological solutions to perceived social problems, in particular African backwardness and the shape of future African development. This article also provides an understanding of the demise of the Kenyan eugenics movement and ends with the discussion of the Kenyan eugenics movement supported by successive governors, directors of education and health, the acting chief native commissioner, as well as district commissioners.


2019 ◽  
Vol 7 (8) ◽  
pp. 246
Author(s):  
Zahid Hassan ◽  
Munawar Sultana ◽  
Sirajul I. Khan ◽  
Martin Braster ◽  
Wilfred F.M. Röling ◽  
...  

Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found transfer-persistent arsenite oxidation activity under four conditions (aerobic/anaerobic; heterotrophic/autotrophic). This suggests that biological decontamination may help ameliorate the problem. The enriched microbial communities were phylogenetically at least as diverse as the unenriched communities: they contained a bonanza of 16S rRNA gene sequences. These related to Hydrogenophaga, Acinetobacter, Dechloromonas, Comamonas, and Rhizobium/Agrobacterium species. In addition, the enriched microbiomes contained genes highly similar to the arsenite oxidase (aioA) gene of chemolithoautotrophic (e.g., Paracoccus sp. SY) and heterotrophic arsenite-oxidizing strains. The enriched cultures also contained aioA phylotypes not detected in the previous survey of uncultivated samples from the same wells. Anaerobic enrichments disclosed a wider diversity of arsenite oxidizing aioA phylotypes than did aerobic enrichments. The cultivatable chemolithoautotrophic and heterotrophic arsenite oxidizers are of great interest for future in or ex-situ arsenic bioremediation technologies for the detoxification of drinking water by oxidizing arsenite to arsenate that should then precipitates with iron oxides. The microbial activities required for such a technology seem present, amplifiable, diverse and hence robust.


Author(s):  
Helena Hashemi Farzaneh ◽  
Ferdinand Angele ◽  
Markus Zimmermann

AbstractBio-inspired design is an innovative methodology for transferring biological solutions into technical solutions, for example for the design of weight- and load-optimized components. Bio-inspired design therefore offers great potential for meeting the challenges of designing additively manufactured components, such as avoiding warpage, supporting structures and material minimisation. Nevertheless, apart from bio-inspired topology optimization tools, bio-inspired design is rarely used in industrial practice because for many companies the practical applicability up to the prototype is not obvious. The aim of this work is therefore a practical approach to the search for biological systems, analysis, abstraction and transfer of analogies. We apply bio-inspired design on the design of a microtiter plate manufactured by stereolithography, whose dimensional accuracy is impaired by warpage. Here, the venus’ flower basket, a deep-sea sponge, can serve as a model. It has a hierarchical structure of silicate needles whose elements are abstracted for bio-inspired transfer. We show and evaluate the transfer of different analogies using a prototype.


BioScience ◽  
1979 ◽  
Vol 29 (5) ◽  
pp. 293-298 ◽  
Author(s):  
Brayton F. Wilson ◽  
Robert R. Archer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document