Canine Parainfluenza Virus

Author(s):  
Wolfgang Baümgartner
Keyword(s):  
2019 ◽  
Vol 31 (1) ◽  
pp. 44-51

Objectives of study are (1) to reinforce the national capacity for diagnosis and antibiogram of some infectious diseases causing severe acute respiratory infection (SARI) and (2) to build a network between hospital and laboratory for the diagnosis and surveillance of SARI in Yangon. This study is a crosssectional hospital- and laboratory-based descriptive study. A total of 825 samples including respiratory samples and blood samples from 511 children attending Yangon Children’s Hospital and Yankin Children’s Hospital from December 2014 to April 2016 for treatment of SARI were included. Identification and antibiotic sensitivity testing were done using Vitek 2. Out of 129 gram-negative bacilli (GNB), K. pneumoniae 32%, P. aeruginosa 18%, A. baumannii 13%, E. coli 9% were mostly isolated. Among 35 gram-positive cocci (GPC), S. aureus 42% and S. pneumoniae 6% were mostly isolated. Multidrug resistance rates were E. coli 100%, K. pneumoniae 95%, A. baumanii 82% and P. aeruginosa 17%. Extended-spectrum beta-latamase (ESBL)-producing K. pneumoniae and E. coli was 6 out of 10 tested organisms. Carbarpenemase-producing GNB and methicillin-resistant Staphylococcus aureus (MRSA) were 21% and 33%, respectively. Virology section tested 529 samples of 490 patients using the FTD33 Multiplex PCR method which can detect 33 pathogens including 20 viruses, 12 bacteria and 1 fungus. Out of 490 patients, 374 were PCR positive. Different types of samples including nasopharyngeal, throat, endotracheal and laryngeal swab, tracheal secretion and bronchoalveolar lavage, were tested. Out of 566 viruses, respiratory syncytial virus (RSV) (19.3%), rhinovirus (17.0%), parechovirus (14.3%), bocavirus (11.1%), adenovirus (10.2%), metapneumo-virus A and B (10.2%), parainfluenza virus (5.7%), enterovirus (3.0%), influenza A virus (2.8%), coronavirus (4%), parainfluenza virus (0.9%) and influenza C virus (0.4%) were detected. This study highlighted the etiological agents of bacteria, viruses and drug-resistant bacterial pathogens in SARI.


Author(s):  
Roy F Chemaly ◽  
Francisco M Marty ◽  
Cameron R Wolfe ◽  
Steven J Lawrence ◽  
Sanjeet Dadwal ◽  
...  

Abstract Background There are no antiviral therapies for parainfluenza virus (PIV) infections. DAS181, a sialidase fusion protein, has demonstrated activity in in vitro and in animal models of PIV. Methods Adult immunocompromised patients diagnosed with PIV lower respiratory tract infection (LRTI) who required oxygen supplementation were randomized 2:1 to nebulized DAS181 (4.5 mg/day) or matching placebo for up to 10 days. Randomization was stratified by need for mechanical ventilation (MV) or supplemental oxygen (SO). The primary endpoint was the proportion of patients reaching clinical stability survival (CSS) defined as returning to room air (RTRA), normalization of vital signs for at least 24 hours, and survival up to day 45 from enrollment. Results A total of 111 patients were randomized to DAS181 (n = 74) or placebo (n = 37). CSS was achieved by 45.0% DAS181-treated patients in the SO stratum compared with 31.0% for placebo (P = .15), whereas patients on MV had no benefit from DAS181. The proportion of patients achieving RTRA was numerically higher for SO stratum DAS181 patients (51.7%) compared with placebo (34.5%) at day 28 (P = .17). In a post hoc analysis of solid organ transplant, hematopoietic cell transplantation within 1 year, or chemotherapy within 1 year, more SO stratum patients achieved RTRA on DAS181 (51.8%) compared with placebo (15.8%) by day 28 (P = .012). Conclusions The primary endpoint was not met, but post hoc analysis of the RTRA component suggests DAS181 may have clinical activity in improving oxygenation in select severely immunocompromised patients with PIV LRTI who are not on mechanical ventilation. Clinical Trials Registration. NCT01644877.


Neonatology ◽  
2021 ◽  
pp. 1-5
Author(s):  
Alexandre Michev ◽  
Alessandro Borghesi ◽  
Caterina Tretti ◽  
Maddalena Martella ◽  
Amelia Di Comite ◽  
...  

Unusual, severe infections or inflammatory episodes in newborns and infants are largely unexplained and often attributed to immature immune responses. Inborn errors of immunity (IEI) are increasingly recognized as the etiology of life-threatening inflammatory and infectious diseases in infancy. We describe a patient with a unique neonatal-onset Familial Mediterranean Fever (FMF) due to compound heterozygous variants in <i>MEFV</i>, presenting as pleuritis following human parainfluenza virus-4 infection. Diagnostic challenges of FMF in infancy include the interpretation of the attacks as infectious episodes. Newborns and infants with acute, recurrent, or chronic, unusually severe infectious or inflammatory conditions should be screened for IEI, including both disorders with defective immunological responses and autoinflammatory disorders.


Sign in / Sign up

Export Citation Format

Share Document