human parainfluenza viruses
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Shao ◽  
Bo Liu ◽  
Yan Xiao ◽  
Xinming Wang ◽  
Lili Ren ◽  
...  

Human parainfluenza viruses (HPIV1–4) cause acute respiratory tract infections, thereby impacting human health worldwide. However, there are no current effective antivirals or licensed vaccines for infection prevention. Moreover, sequence information for human parainfluenza viruses (HPIVs) circulating in China is inadequate. Therefore, to shed light on viral genetic diversity and evolution, we collected samples from patients infected with HPIV1–4 in China from 2012 to 2018 to sequence the viruses. We obtained 24 consensus sequences, comprising 1 for HPIV1, 2 for HPIV2, 19 for HPIV3, and 2 for HPIV4A. Phylogenetic analyses classified the 1 HPIV1 into clade 2, and the 2 HPIV4 sequences into cluster 4A. Based on the hemagglutinin-neuraminidase (HN) gene, a new sub-cluster was identified in one of the HPIV2, namely G1c, and the 19 HPIV3 sequences were classified into the genetic lineages of C3f and C3a. The results indicated that HPIV1–4 were co-circulated in China. Further, the lineages of sub-cluster C3 of HPIV3 were co-circulated in China. A recombination analysis indicated that a putative recombination event may have occurred in the HN gene of HPIV3. In the obtained sequences of HPIV3, we found that two amino acid substitution sites (R73K in the F protein of PUMCH14028/2014 and A281V in the HN protein of PUMCH13961/2014) and a negative selection site (amino acid position 398 in the F protein) corresponded to the previously reported neutralization-related sites. Moreover, amino acid substitution site (K108E) corresponded to the negative selection site (amino acid position 108) in the 10 F proteins of HPIV3. However, no amino acid substitution site corresponded to the glycosylation site in the obtained HPIV3 sequences. These results might help in studying virus evolution, developing vaccines, and monitoring HPIV-related respiratory diseases.


2021 ◽  
Vol 9 (7) ◽  
pp. 1508
Author(s):  
Djin-Ye Oh ◽  
Barbara Biere ◽  
Markus Grenz ◽  
Thorsten Wolff ◽  
Brunhilde Schweiger ◽  
...  

Human parainfluenza viruses (HPIVs) are important causes of respiratory illness, especially in young children. However, surveillance for HPIV is rarely performed continuously, and national-level epidemiologic and genetic data are scarce. Within the German sentinel system, to monitor acute respiratory infections (ARI), 4463 respiratory specimens collected from outpatients <5 years of age between October 2015 and September 2019 were retrospectively screened for HPIV 1–4 using real-time PCR. HPIV was identified in 459 (10%) samples. HPIV-3 was the most common HPIV-type, with 234 detections, followed by HPIV-1 (113), HPIV-4 (61), and HPIV-2 (49). HPIV-3 was more frequently associated with age <2 years, and HPIV-4 was more frequently associated with pneumonia compared to other HPIV types. HPIV circulation displayed distinct seasonal patterns, which appeared to vary by type. Phylogenetic characterization clustered HPIV-1 in Clades 2 and 3. Reclassification was performed for HPIV-2, provisionally assigning two distinct HPIV-2 groups and six clades, with German HPIV-2s clustering in Clade 2.4. HPIV-3 clustered in C1, C3, C5, and, interestingly, in A. HPIV-4 clustered in Clades 2.1 and 2.2. The results of this study may serve to inform future approaches to diagnose and prevent HPIV infections, which contribute substantially to ARI in young children in Germany.


Author(s):  
Mohammad Farahmand ◽  
Somayeh Shatizadeh Malekshahi ◽  
Mohammad Reza Jabbari ◽  
Mohammad Shayestehpour

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Emmanuelle Genoyer ◽  
Katarzyna Kulej ◽  
Chuan Tien Hung ◽  
Patricia A. Thibault ◽  
Kristopher Azarm ◽  
...  

ABSTRACT Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases. IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.


2020 ◽  
Author(s):  
Emmanuelle Genoyer ◽  
Katarzyna Kulej ◽  
Chuan Tien Hung ◽  
Patricia A. Thibault ◽  
Kristopher Azarm ◽  
...  

ABSTRACTParamyxoviruses are negative sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here we use the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) generates heterogenous populations of cells. Cells enriched in full-length virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here we take advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examine the role of matrix protein and nucleoprotein and determine that they are not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative protein abundance and localization in DVG- and FL-high cells, we identify viral polymerase complex components L and, specifically, its cofactor C proteins as interactors with Rab11a. We find that accumulation of these proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells which remain in replication phases.IMPORTANCEParamyxoviruses are a family of viruses that include a number of pathogens with significant burdens on human health. Particularly, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or direct acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and coopt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here we use the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We find that viral polymerase components large protein L and accessory C proteins are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.


2020 ◽  
Vol 94 (1) ◽  
pp. 86-96
Author(s):  
Yasuo KABURAGI ◽  
Hiroyuki UENO ◽  
Akihiko KAETSU ◽  
Kentaro TOMARI ◽  
Koji KIKUCHI ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0220057 ◽  
Author(s):  
Michael E. Bose ◽  
Susmita Shrivastava ◽  
Jie He ◽  
Martha I. Nelson ◽  
Jayati Bera ◽  
...  

2019 ◽  
Vol 8 (15) ◽  
Author(s):  
My V. T. Phan ◽  
Georgina Arron ◽  
Corine H. GeurtsvanKessel ◽  
Robin C. Huisman ◽  
Richard Molenkamp ◽  
...  

We report the complete genome sequences of eight human parainfluenza viruses (HPIV) belonging to Human respirovirus 1 (HPIV-1), Human respirovirus 3 (HPIV-3), Human rubulavirus 2 (HPIV-2), and Human rubulavirus 4 (HPIV-4). The genome sequences were generated using random-primed next-generation sequencing and represent the first HPIV full-genome sequences from the Netherlands.


2018 ◽  
Vol 12 (6) ◽  
pp. 706-716 ◽  
Author(s):  
Philip Maykowski ◽  
Marie Smithgall ◽  
Philip Zachariah ◽  
Matthew Oberhardt ◽  
Celibell Vargas ◽  
...  

Author(s):  
Pippa Newton

Infections of the nasal cavity, sinuses, pharynx, epiglottis, and larynx are termed upper respiratory tracts infections. These include acute coryza, pertussis, sinusitis, pharyngitis, tonsillitis, epiglottitis, laryngitis, laryngotracheobronchitis, and influenza. Rhinoviruses and coronaviruses account for the majority of acute coryzal illnesses. Acute sinusitis (<4 weeks duration) is also usually viral in origin. About 70% of pharyngitis and tonsillitis cases are viral in etiology. Haemophilus influenzae (Type B) is responsible for most cases of epiglottitis. Acute laryngitis and laryngotracheobronchitis are usually caused by human parainfluenza viruses. This chapter focuses on upper respiratory tract infections, including their etiology, symptoms, demographics, natural history, complications, diagnosis, prognosis, and treatment.


Sign in / Sign up

Export Citation Format

Share Document