Research Issues and Challenges in Elastic Optical Networks

Author(s):  
Bijoy Chand Chatterjee ◽  
Eiji Oki
Author(s):  
Naseer Hwaidi Alkhazaali ◽  
Raed Abduljabbar Aljiznawi ◽  
Dheyaa Jasim Kadhim

<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but also played an important role in future communication networks. Some technical development of wireless access networks-optical and seamless coexistence of both techniques, this paper is a review of the State of the latest developments and advances in optical and wireless communications, major technical challenges to provide flawless communication in fiber- wireless (FiWi) access networks, places of interest important research issues to provide intelligence information, access and transport and the convergence of these networks in the future.</p>


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2655 ◽  
Author(s):  
Yue Zong ◽  
Chuan Feng ◽  
Yingying Guan ◽  
Yejun Liu ◽  
Lei Guo

The emerging 5G applications and the connectivity of billions of devices have driven the investigation of multi-domain heterogeneous converged optical networks. To support emerging applications with their diverse quality of service requirements, network slicing has been proposed as a promising technology. Network virtualization is an enabler for network slicing, where the physical network can be partitioned into different configurable slices in the multi-domain heterogeneous converged optical networks. An efficient resource allocation mechanism for multiple virtual networks in network virtualization is one of the main challenges referred as virtual network embedding (VNE). This paper is a survey on the state-of-the-art works for the VNE problem towards multi-domain heterogeneous converged optical networks, providing the discussion on future research issues and challenges. In this paper, we describe VNE in multi-domain heterogeneous converged optical networks with enabling network orchestration technologies and analyze the literature about VNE algorithms with various network considerations for each network domain. The basic VNE problem with various motivations and performance metrics for general scenarios is discussed. A VNE algorithm taxonomy is presented and discussed by classifying the major VNE algorithms into three categories according to existing literature. We analyze and compare the attributes of algorithms such as node and link embedding methods, objectives, and network architecture, which can give a selection or baseline for future work of VNE. Finally, we explore some broader perspectives in future research issues and challenges on 5G scenario, field trail deployment, and machine learning-based algorithms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vikas Kaushik ◽  
Himanshi Saini

Abstract The characteristics of all optical networks such as high speed, data carrying capacity and transparency make them suitable for emerged networks domain. This paper presents an overview of research challenges in the field of all optical communication networks. Various subdomains of an all optical system, for example device-level designs, communication technique-level designs and network-level designs have been extensively investigated and presented in this paper. Further, the related research issues under each category of these domains have been discussed. These issues constitute the basic criterion for further development in all optical domain.


2016 ◽  
Vol 59 (10) ◽  
Author(s):  
Yuefeng Ji ◽  
Jiawei Zhang ◽  
Yongli Zhao ◽  
Xiaosong Yu ◽  
Jie Zhang ◽  
...  

Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Sign in / Sign up

Export Citation Format

Share Document