Construction and Management of Remote Sensing Production Infrastructures across Multiple Satellite Data Centers

2019 ◽  
pp. 121-149
Author(s):  
Lizhe Wang ◽  
Jining Yan ◽  
Yan Ma
2016 ◽  
Vol 19 (3) ◽  
pp. 1243-1260 ◽  
Author(s):  
Jie Zhang ◽  
Jining Yan ◽  
Yan Ma ◽  
Dong Xu ◽  
Pengfei Li ◽  
...  

2007 ◽  
Vol 13 (1s) ◽  
pp. 80-85
Author(s):  
E.B. Kudashev ◽  
◽  
A.N. Filonov ◽  

Author(s):  
Rupali Dhal ◽  
D. P. Satapathy

The dynamic aspects of the reservoir which are water spread, suspended sediment distribution and concentration requires regular and periodical mapping and monitoring. Sedimentation in a reservoir affects the capacity of the reservoir by affecting both life and dead storages. The life of a reservoir depends on the rate of siltation. The various aspects and behavior of the reservoir sedimentation, like the process of sedimentation in the reservoir, sources of sediments, measures to check the sediment and limitations of space technology have been discussed in this report. Multi satellite remote sensing data provide information on elevation contours in the form of water spread area. Any reduction in reservoir water spread area at a specified elevation corresponding to the date of satellite data is an indication of sediment deposition. Thus the quality of sediment load that is settled down over a period of time can be determined by evaluating the change in the aerial spread of the reservoir at various elevations. Salandi reservoir project work was completed in 1982 and the same is taken as the year of first impounding. The original gross and live storages capacities were 565 MCM& 556.50 MCM respectively. In SRS CWC (2009), they found that live storage capacity of the Salandi reservoir is 518.61 MCM witnessing a loss of 37.89 MCM (i.e. 6.81%) in a period of 27 years.The data obtained through satellite enables us to study the aspects on various scales and at different stages. This report comprises of the use of satellite to obtain data for the years 2009-2013 through remote sensing in the sedimentation study of Salandi reservoir. After analysis of the satellite data in the present study(2017), it is found that live capacity of the reservoir of the Salandi reservoir in 2017 is 524.19MCM witnessing a loss of 32.31 MCM (i.e. 5.80%)in a period of 35 years. This accounts for live capacity loss of 0.16 % per annum since 1982. The trap efficiencies of this reservoir evaluated by using Brown’s, Brune’s and Gill’s methods are 94.03%, 98.01and 99.94% respectively. Thus, the average trap efficiency of the Salandi Reservoir is obtained as 97.32%.


2019 ◽  
Vol 943 (1) ◽  
pp. 110-118
Author(s):  
A.A. Kadochnikov

Today, remote sensing data are an important source of operational information about the environment for thematic GIS, this data can be used for the development of water, forestry and agriculture management, in the ecology and nature management, with territorial planning, etc. To solve the problem of ensuring the effective use of the space activities’results in the Krasnoyarsk Territory a United Regional Remote Sensing Center was created. On the basis of the Center, a new satellite receiving complex of FRC KSC SB RAS was put into operation. It is currently receiving satellite data from TERRA, AQUA, Suomi NPP and FENG-YUN satellites. Within the framework in cooperation with the Siberian Regional Center for Remote Sensing the Earth, an archive of satellite data from domestic Resource-P and Meteor-M2 satellites was created. The work considers some features of softwaredevelopment and technological support tools for loading, processing and publishing remote sensing data. The product is created in the service-oriented paradigm based on geoportal technologies and interactive web-cartography. The focus in this article is paid to the peculiarities of implementing the software components of the web GIS, the efficient processing and presentation of geospatial data.


Author(s):  
Nathalie Pettorelli

This book intends to familiarise prospective users in the environmental community with satellite remote sensing technology and its applications, introducing terminology and principles behind satellite remote sensing data and analyses. It provides a detailed overview of the possible applications of satellite data in natural resource management, demonstrating how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Topics considered include the use of satellite data to monitor the various dimensions of biodiversity; the use of this technology to track pressures on biodiversity such as invasive species, pollution, and illegal fishing; the utility of satellite remote sensing to inform the management of protected areas, translocation, and habitat restoration; and the contribution of satellite remote sensing towards the monitoring of ecosystem services and wellbeing. The intended audience is ecologists and environmental scientists; the book is targeted as a handbook and is therefore also suitable for advanced undergraduate and postgraduate students in the biological and ecological sciences, as well as policy makers and specialists in the fields of conservation biology, biodiversity monitoring, and natural resource management. The book assumes no prior technical knowledge of satellite remote sensing systems and products. It is written so as to generate interest in the ecological, environmental management, and remote sensing communities, highlighting issues associated with the emergence of truly synergistic approaches between these disciplines.


2018 ◽  
Vol 10 (11) ◽  
pp. 1673 ◽  
Author(s):  
Davide Notti ◽  
Daniele Giordan ◽  
Fabiana Caló ◽  
Antonio Pepe ◽  
Francesco Zucca ◽  
...  

Satellite remote sensing is a powerful tool to map flooded areas. In recent years, the availability of free satellite data significantly increased in terms of type and frequency, allowing the production of flood maps at low cost around the world. In this work, we propose a semi-automatic method for flood mapping, based only on free satellite images and open-source software. The proposed methods are suitable to be applied by the community involved in flood hazard management, not necessarily experts in remote sensing processing. As case studies, we selected three flood events that recently occurred in Spain and Italy. Multispectral satellite data acquired by MODIS, Proba-V, Landsat, and Sentinel-2 and synthetic aperture radar (SAR) data collected by Sentinel-1 were used to detect flooded areas using different methodologies (e.g., Modified Normalized Difference Water Index, SAR backscattering variation, and supervised classification). Then, we improved and manually refined the automatic mapping using free ancillary data such as the digital elevation model-based water depth model and available ground truth data. We calculated flood detection performance (flood ratio) for the different datasets by comparing with flood maps made by official river authorities. The results show that it is necessary to consider different factors when selecting the best satellite data. Among these factors, the time of the satellite pass with respect to the flood peak is the most important. With co-flood multispectral images, more than 90% of the flooded area was detected in the 2015 Ebro flood (Spain) case study. With post-flood multispectral data, the flood ratio showed values under 50% a few weeks after the 2016 flood in Po and Tanaro plains (Italy), but it remained useful to map the inundated pattern. The SAR could detect flooding only at the co-flood stage, and the flood ratio showed values below 5% only a few days after the 2016 Po River inundation. Another result of the research was the creation of geomorphology-based inundation maps that matched up to 95% with official flood maps.


Author(s):  
A. H. Ngandam Mfondoum ◽  
P. G. Gbetkom ◽  
R. Cooper ◽  
S. Hakdaoui ◽  
M. B. Mansour Badamassi

Abstract. This paper addresses the remote sensing challenging field of urban mixed pixels on a medium spatial resolution satellite data. The tentatively named Normalized Difference Built-up and Surroundings Unmixing Index (NDBSUI) is proposed by using Landsat-8 Operational Land Imager (OLI) bands. It uses the Shortwave Infrared 2 (SWIR2) as the main wavelength, the SWIR1 with the red wavelengths, for the built-up extraction. A ratio is computed based on the normalization process and the application is made on six cities with different urban and environmental characteristics. The built-up of the experimental site of Yaoundé is extracted with an overall accuracy of 95.51% and a kappa coefficient of 0.90. The NDBSUI is validated over five other sites, chosen according to Cameroon’s bioclimatic zoning. The results are satisfactory for the cities of Yokadouma and Kumba in the bimodal and monomodal rainfall zones, where overall accuracies are up to 98.9% and 97.5%, with kappa coefficients of 0.88 and 0.94 respectively, although these values are close to those of three other indices. However, in the cities of Foumban, Ngaoundéré and Garoua, representing the western highlands, the high Guinea savannah and the Sudano-sahelian zones where built-up is more confused with soil features, overall accuracies of 97.06%, 95.29% and 74.86%, corresponding to 0.918, 0.89 and 0.42 kappa coefficients were recorded. Difference of accuracy with EBBI, NDBI and UI are up to 31.66%, confirming the NDBSUI efficiency to automate built-up extraction and unmixing from surrounding noises with less biases.


Sign in / Sign up

Export Citation Format

Share Document