Correlating bacterial growth potential measurement to real time fouling development in full-scale SWRO

Author(s):  
Almotasembellah Mustafa Jawdat Abushaban
Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 360
Author(s):  
Almotasembellah Abushaban ◽  
Sergio G. Salinas-Rodriguez ◽  
Moses Kapala ◽  
Delia Pastorelli ◽  
Jan C. Schippers ◽  
...  

Several potential growth methods have been developed to monitor biological/organic fouling potential in seawater reverse osmosis (SWRO), but to date the correlation between these methods and biofouling of SWRO has not been demonstrated. In this research, the relation between a new adenosine triphosphate (ATP)-based bacterial growth potential (BGP) test of SWRO feed water and SWRO membrane performance is investigated. For this purpose, the pre-treatment of a full-scale SWRO plant including dissolved air flotation (DAF) and two stage dual media filtration (DMF) was monitored for 5 months using BGP, orthophosphate, organic fractions by liquid chromatography coupled with organic carbon detection (LC-OCD), silt density index (SDI), and modified fouling index (MFI). Results showed that particulate fouling potential was well controlled through the SWRO pre-treatment as the measured SDI and MFI in the SWRO feed water were below the recommended values. DAF in combination with coagulation (1–5 mg-Fe3+/L) consistently achieved 70% removal of orthophosphate, 50% removal of BGP, 25% removal of biopolymers, and 10% removal of humic substances. Higher BGP (100–950 µg-C/L) in the SWRO feed water corresponded to a higher normalized pressure drop in the SWRO, suggesting the applicability of using BGP as a biofouling indicator in SWRO systems. However, to validate this conclusion, more SWRO plants with different pre-treatment systems need to be monitored for longer periods of time.


2016 ◽  
Vol 16 (4) ◽  
pp. 865-880 ◽  
Author(s):  
E. I. Prest ◽  
F. Hammes ◽  
S. Kötzsch ◽  
M. C. M. van Loosdrecht ◽  
J. S. Vrouwenvelder

A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratory-scale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 µg L−1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL−1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL−1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL−1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL−1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL−1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL−1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to better control bacterial growth during water distribution.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 76
Author(s):  
Nirajan Dhakal ◽  
Sergio G. Salinas-Rodriguez ◽  
Joshua Ampah ◽  
Jan C. Schippers ◽  
Maria D. Kennedy

Measuring the bacterial growth potential of seawater reverse osmosis (SWRO) feed water is an issue that is receiving growing attention. This study developed and demonstrated the applicability of the flow-cytometry (FCM)-based bacterial growth potential (BGP) method to assess the biofouling potential in SWRO systems using natural microbial consortium. This method is relatively fast (2–3 days) compared to conventional bioassays. The effect of the potential introduction of nutrients during measurement has been studied thoroughly to achieve the lowest measure value of about 45,000 cells/mL, which is equivalent to about (10 µg-C glucose/L). The BGP method was applied in two full-scale SWRO plants that included (i) dissolved air flotation (DAF) and ultra-filtration (UF); (ii) dual-media filtration (DMF) and cartridge filter (CF), which were compared with the cleaning frequency of the plants. A significant reduction (54%) in BGP was observed through DAF–UF as pre-treatment (with 0.5 mg Fe3+/L), while there was a 40% reduction by DMF–CF (with 0.8 mg Fe3+/L). In terms of the absolute number, the SWRO feed water after DAF–UF supports 1.5 × 106 cells/mL, which is 1.25 times higher than after DMF–CF. This corresponds to the higher cleaning-in-place (CIP) frequency of SWRO with DAF–UF compared to DMF–CF as pre-treatment, indicating that the BGP method has an added value in monitoring the biofouling potential in SWRO systems.


2021 ◽  
Author(s):  
A. Kirby Nicholson ◽  
Robert C. Bachman ◽  
R. Yvonne Scherz ◽  
Robert V. Hawkes

Abstract Pressure and stage volume are the least expensive and most readily available data for diagnostic analysis of hydraulic fracturing operations. Case history data from the Midland Basin is used to demonstrate how high-quality, time-synchronized pressure measurements at a treatment and an offsetting shut-in producing well can provide the necessary input to calculate fracture geometries at both wells and estimate perforation cluster efficiency at the treatment well. No special wellbore monitoring equipment is required. In summary, the methods outlined in this paper quantifies fracture geometries as compared to the more general observations of Daneshy (2020) and Haustveit et al. (2020). Pressures collected in Diagnostic Fracture Injection Tests (DFITs), select toe-stage full-scale fracture treatments, and offset observation wells are used to demonstrate a simple workflow. The pressure data combined with Volume to First Response (Vfr) at the observation well is used to create a geometry model of fracture length, width, and height estimates at the treatment well as illustrated in Figure 1. The producing fracture length of the observation well is also determined. Pressure Transient Analysis (PTA) techniques, a Perkins-Kern-Nordgren (PKN) fracture propagation model and offset well Fracture Driven Interaction (FDI) pressures are used to quantify hydraulic fracture dimensions. The PTA-derived Farfield Fracture Extension Pressure, FFEP, concept was introduced in Nicholson et al. (2019) and is summarized in Appendix B of this paper. FFEP replaces Instantaneous Shut-In Pressure, ISIP, for use in net pressure calculations. FFEP is determined and utilized in both DFITs and full-scale fracture inter-stage fall-off data. The use of the Primary Pressure Derivative (PPD) to accurately identify FFEP simplifies and speeds up the analysis, allowing for real time treatment decisions. This new technique is called Rapid-PTA. Additionally, the plotted shape and gradient of the observation-well pressure response can identify whether FDI's are hydraulic or poroelastic before a fracture stage is completed and may be used to change stage volume on the fly. Figure 1Fracture Geometry Model with FDI Pressure Matching Case studies are presented showing the full workflow required to generate the fracture geometry model. The component inputs for the model are presented including a toe-stage DFIT, inter-stage pressure fall-off, and the FDI pressure build-up. We discuss how to optimize these hydraulic fractures in hindsight (look-back) and what might have been done in real time during the completion operations given this workflow and field-ready advanced data-handling capability. Hydraulic fracturing operations can be optimized in real time using new Rapid-PTA techniques for high quality pressure data collected on treating and observation wells. This process opens the door for more advanced geometry modeling and for rapid design changes to save costs and improve well productivity and ultimate recovery.


Wind Energy ◽  
2018 ◽  
Vol 22 (2) ◽  
pp. 239-256 ◽  
Author(s):  
Zili Zhang ◽  
Biswajit Basu ◽  
Søren R.K. Nielsen

2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


2017 ◽  
Vol 99 ◽  
pp. 91-101 ◽  
Author(s):  
Almotasembellah Abushaban ◽  
M. Nasir Mangal ◽  
Sergio. G. Salinas-Rodriguez ◽  
Chidiebere Nnebuo ◽  
Subhanjan Mondal ◽  
...  

The Analyst ◽  
2013 ◽  
Vol 138 (17) ◽  
pp. 4795 ◽  
Author(s):  
Kristýna Sovová ◽  
Jaroslav Čepl ◽  
Anton Markoš ◽  
Patrik Španěl

Sign in / Sign up

Export Citation Format

Share Document