Advances in nutrient management modelling and nutrient concentration prediction for soilless culture systems

Author(s):  
Jung Eek Son ◽  
Tae In Ahn ◽  
Taewon Moon
2021 ◽  
Vol 12 ◽  
Author(s):  
Tae In Ahn ◽  
Jong Hwa Shin ◽  
Jung Eek Son

An electrical conductivity (EC)-based closed-loop soilless culture system is practical for in-field deployment. Literature on the closed-loop soilless culture nutrient management premise the limitations in managing recycled nutrients under dynamic changes in individual nutrient uptake concentrations. However, recent systems analysis studies predicting solutions for nutrient fluctuation stabilization in EC-based closed-loop soilless culture systems suggest that the system may have a deterministic side in nutrient variation. This study aims to derive a nutrient control principle in an EC-based nutrient recycling soilless culture system by theoretical and experimental analyses. An integrated model of solutes such as K+, Ca2+, and Mg2+ and water transport in growing media, automated nutrient solution preparation, and nutrient uptake was designed. In the simulation, the intrinsic characteristics of nutrient changes among open-, semi- closed-, and closed-loop soilless cultures were compared, and stochastic simulations for nutrient control were performed in the closed-loop system. Four automated irrigation modules for comparing nutrient changes among the soilless culture systems were constructed in the greenhouse. Sweet pepper plants were used in the experiment. In the experimental analysis, nutrient concentration conversion to the proportion between nutrients revealed distinctive trends of nutrient changes according to the treatment level of drainage recycling. Theoretical and experimental analyses exhibited that nutrient variations in open-, semi- closed-, and closed-loop soilless culture systems can be integrated as a function of nutrient supply to the system’s boundary areas. Furthermore, stochastic simulation analysis indicated that the nutrient ratio in the soilless culture system reveals the nutrient uptake parameter-based deterministic patterns. Thus, the nutrient ratio in the closed-loop soilless culture could be controlled by the long-term feedback of this ratio. We expect that these findings provide theoretical frameworks for systemizing nutrient management techniques in EC-based closed-loop soilless culture systems.


Author(s):  
Jung Eek Son ◽  
◽  
Tae In Ahn ◽  
Taewon Moon ◽  
◽  
...  

In closed-loop soilless culture systems (SCS), ion concentration and ionic balance are important factors to be considered for stable management of nutrient solutions. For maintaining appropriate ion concentration and ion balance, various techniques of nutrient analysis and prediction are required. Through nutrient management modelling, nutrient variations in the closed-loop soilless culture systems using nutrient replenishment methods can be better understood and predicted. Deep learning algorithms could be a methodology to predict ion concentrations using environments and growth data. A trained deep learning model has been found to accurately estimate ion concentration and balance in closed-loop SCS. Applications of theoretical modelling and artificial intelligence can thus be useful for the nutrient management of closed-loop SCS in greenhouses and vertical farms.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 459d-459
Author(s):  
Fumiomi Takeda ◽  
Paul R. Adler ◽  
D. Michael Glenn

Strawberry plants (cvs. Camarosa, Chandler, Sweet Charlie, Primetime, Jewel, and Tribute) were grown in soilless culture systems in a greenhouse from October to May. Fresh-dug and runner-tip Aplug® plants were transplanted into two systems: vertically stacked pots (24 plants/m2) containing perlite and horizontal nutrient film technique troughs (13 plants/m2). Plants were fertigated continuously with recirculating nutrient solution. In a 7-month production cycle, the plug plants bloomed earlier and produced more fruit during the first month of harvest (December) than the fresh-dug plants. Higher yields from plug plants were a result of more fruit numbers and not larger fruit size. Fruit production averaged 6.0 and 3.5 kg/m2 in the trough and pot systems, respectively. The vertical growing system allows greater plant densities, but light intensity reaching the plants in the lower sections of the tower can be less than 20% of levels measured at the top. Establishment costs of protected culture systems are higher, but production is earlier and labor costs are typically reduced. Greenhouse hydroponic culture systems could extend the winter strawberry production to more northern locations.


Author(s):  
Jeb S. Fields ◽  
◽  
Nazim S. Gruda ◽  

Soilless substrates utilised in traditional hydroponics are often inorganic or synthetic materials, as opposed to organic substrate components utilised in other forms of soilless culture. As growers seek more precision production applications, more operations are shifting to soilless culture production for increased resource control. The standard substrate components utilised in soilless production have been well researched and engineered to fit into specific operations. Understanding the relationship between the substrate, water, and fertiliser in a container and knowing the movement within will allow for continued beneficial improvements in soilless culture and container horticulture industry. However, as we progress agricultural practices, new substrate materials optimised substrate materials must be developed. Here we present the traditional inorganic, synthetic organic materials and peat and how these components are developed, engineered, and processed.


Author(s):  
Georgios Nikolaou ◽  
Damianos Neocleous ◽  
Evangelini Kitta ◽  
Nikolaos Katsoulas

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 298 ◽  
Author(s):  
Nazim Gruda

Decreasing arable land, rising urbanization, water scarcity, and climate change exert pressure on agricultural producers. Moving from soil to soilless culture systems can improve water use efficiency, especially in closed-loop systems with a recirculating water/nutrient solution that recaptures the drain water for reuse. However, the question of alternative materials to peat and rockwool, as horticultural substrates, has become increasingly important, due to the despoiling of ecologically important peat bog areas and a pervasive waste problem. In this paper, we provide a comprehensive critical review of current developments in soilless culture, growing media, and future options of using different materials other than peat and rockwool. Apart from growing media properties and their performance from the point of view of plant production, economic and environmental factors are also important. Climate change, CO2 emissions, and other ecological issues will determine and drive the development of soilless culture systems and the choice of growing media in the near future. Bioresources, e.g., treated and untreated waste, as well as renewable raw materials, have great potential to be used as growing media constituents and stand-alone substrates. A waste management strategy aimed at reducing, reusing, and recycling should be further and stronger applied in soilless culture systems. We concluded that the growing media of the future must be available, affordable, and sustainable and meet both quality and environmental requirements from growers and society, respectively.


Sign in / Sign up

Export Citation Format

Share Document