The influence of white mineral oil treatments on lemon trees: Three years of experiments*

Author(s):  
E. Di Martino ◽  
G. Lanza ◽  
E. Di Martino Aleppo
Keyword(s):  
2016 ◽  
Vol 9 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqiang Jing ◽  
Jiatong Tan ◽  
Haili Hu ◽  
Jie Sun ◽  
Peiyu Jing

Transparent model oils are commonly used to study the flow patterns and pressure gradient of crude oil-water flow in gathering pipes. However, there are many differences between the model oil and crude oils. The existing literatures focus on the flow pattern transition and pressure gradient calculation of model oils. This paper compares two most commonly used model oils (white mineral oil and silicon oil) with Xinjiang crude oil from the perspectives of rheological properties, oil-water interfacial tensions, emulsion photomicrographs and demulsification process. It indicates that both the white mineral oil and the crude oils are pseudo plastic fluids, while silicon oil is Newtonian fluid. The viscosity-temperature relationship of white mineral oil is similar to that of the diluted crude oil, while the silicon oil presents a less viscosity gradient with the increasing temperature. The oil-water interfacial tension can be used to evaluate the oil dispersing ability in the water phase, but not to evaluate the emulsion stability. According to the Turbiscan lab and the stability test, the model oil emulsion is less stable than that of crude oil, and easier to present water separation.


2020 ◽  
Vol 13 (11) ◽  
pp. 2493-2501
Author(s):  
Jossie Intan Cahyani ◽  
Sitarina Widyarini ◽  
Michael Haryadi Wibowo

Background and Aim: Newcastle disease (ND) and avian influenza (AI) are two devastating diseases of poultry, which cause great economic losses to the poultry industry and disrupt food security in our country. The use of ND-AI inactive bivalent vaccine is very effective and economical to prevent and control ND and AI disease. Bivalent ND LaSota-AI H9N2 vaccine is not yet available in Indonesia. The inactivated vaccines used in poultry industry often require oil adjuvant to elicit a sufficient immune response. This study aimed to develop the bivalent inactive vaccines containing ND LaSota and AI H9N2 Sidrap isolate which are local isolates as poultry vaccine candidates, and formulated with two different commercial adjuvants, then compared. Materials and Methods: Two vaccines bivalent were prepared by emulsifying inactivated Newcastle disease virus (LaSota strain) and AI H9N2 Sidrap isolate viruses with Marcol white mineral oil and Montanide ISA70 adjuvants. Both of bivalent vaccines were tested for safety (physical and histopathological at the injection site) and efficacy in specific-pathogen-free chickens. Parameters used for the evaluation of the efficacy were immunogenicity by hemagglutination inhibition and protection percentage. Results: Both bivalent vaccines are safe to use. Post-vaccination (PV) immune response was observed using a hemagglutination inhibition test at 2, 3, 4, 5, 6, 7, and 8 weeks of PV. The bivalent vaccine B gives a better immune response to ND at 2, 3, and 4 weeks of PV (p<0.05) compared to the bivalent vaccine A, but in 5, 6, 7, and 8 weeks, the PV does not show differences in the immune response. The immune response to AI H9N2 showed differences at weeks 2 and 3 PV (p<0.05) with the bivalent vaccine B indicated higher immunity. A single immunization with both bivalent vaccines induces 100% protection in chickens that have been vaccinated against the deadly challenge with the virulent ND virus. Conclusion: Both of bivalent vaccines are safe to use and provide good efficacy against virulent ND viruses, but bivalent vaccine B (with Montanide ISA70 adjuvant) shows better immune response than bivalent vaccine A (Marcol white mineral oil adjuvant).


AIHAJ ◽  
1964 ◽  
Vol 25 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Wm. D. Wagner ◽  
Paul G. Wright ◽  
Herbert E. Stokinger

2012 ◽  
Vol 119-120 ◽  
pp. 16-22 ◽  
Author(s):  
Shaofeng Xiong ◽  
Zhangfu Yuan ◽  
Zhoulan Yin ◽  
Wenbin Yan
Keyword(s):  

Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 81-87 ◽  
Author(s):  
S. Kent Harrison ◽  
Loyd M. Wax

Laboratory photolysis rates of 2,4-D [(2,4-dichlorophenoxy)acetic acid], bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide], and haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid} in dilute aqueous solution were enhanced by the presence of adjuvants. Addition of 1.0% (v/v) petroleum oil concentrate (POC), 1.0% (v/v) soybean oil concentrate (SBOC), and 0.15% (v/v) emulsifier package (EP) enhanced herbicide photolysis rates more than addition of 0.15% (v/v) oxysorbic (20 POE) (polyoxyethylene sorbitan monolaurate). Bioassays showed that phytotoxicity of photolyzed herbicide solutions was negatively correlated with time of exposure to ultraviolet light. Addition of 0.85% (v/v) acetophenone to aqueous herbicide solutions containing 0.15% (v/v) oxysorbic strongly sensitized photodegradation of 2,4-D, and to a lesser extent, haloxyfop. Acetophenone had no effect on bentazon photolysis in the presence of oxysorbic. In another study, herbicides were dissolved in white mineral oil or once-refined soybean oil and exposed to ultraviolet light. After a 6-h exposure, there was 92% loss of haloxyfop in mineral oil and 36% loss in soybean oil. There was no difference between oils in affecting the photolysis rate of 2,4-D or bentazon.


Sign in / Sign up

Export Citation Format

Share Document