Model Order Reduction of Some Critical Systems Using an Intelligent Computing Technique

Author(s):  
Souvik Ganguli ◽  
Parag Nijhawan ◽  
Manish Kumar Singla ◽  
Jyoti Gupta ◽  
Abhimanyu Kumar
Author(s):  
Pamela J. Tannous ◽  
Andrew G. Alleyne

This paper presents a fault detection and isolation (FDI) approach for actuator faults of complex thermal management systems. In the case of safety critical systems, early fault diagnosis not only improves system reliability, but can also help prevent complete system failure (i.e., aircraft system). In this work, a robust unknown input observer (UIO)-based actuator FDI approach is applied on an example aircraft fluid thermal management system (FTMS). Robustness is achieved by decoupling the effect of unknown inputs modeled as additive disturbances (i.e., modeling errors, linearization errors, parameter variations, or model order reduction errors) from the residuals generated from a bank of UIOs. Robustness is central to avoid false alarms without reducing residual sensitivity to actual faults in the system. System dynamics are modeled using a graph-based approach. A structure preserving aggregation-based model-order reduction technique is used to reduce the complexity of the dynamic model. A reduced-order linearized state space model is then used in a bank of UIOs to generate a set of structured robust (in the sense of disturbance decoupling) residuals. Simulation and experimental results show successful (i.e., no false alarms) actuator FDI in the presence of unknown inputs.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document