Microbial indicators and methods for source tracking faecal contamination of groundwater

2021 ◽  
pp. 181-201
Author(s):  
Salonee Martins ◽  
Aishwarya Pathare ◽  
Purva Salvi ◽  
Unnati Bhalerao ◽  
Mahalaxmi U Bhat ◽  
...  
2008 ◽  
Vol 57 (6) ◽  
pp. 849-856 ◽  
Author(s):  
R. La Mantia ◽  
C. Masciopinto ◽  
C. Levantesi ◽  
V. Tandoi

The study investigates the fate and transport of microorganisms introduced by artificial groundwater recharge at the Nardò fractured aquifer in Salento, Italy. Microbial indicators of faecal contamination, parasitic protozoa (Giardia and Cryptosporidium) and pathogenic bacteria (Campylobacter spp.), were monitored into injected water and groundwater to test the efficiency of the “natural disinfection” into the fractured aquifer. A remarkable decrease of microbial indicators and pathogens was observed suggesting that pathogens removal or inactivation may be possible during water flow in fractured aquifer. The recently described PNA probe CJE195 (Lehtola et al. 2005) was utilised for the rapid and specific detection of Campylobacter spp. by fluorescence in situ hybridization (FISH) after enrichment. FISH results were consistent with those of traditional cultural method (ISO 17995) applied in parallel: time required for Campylobacter identification was reduced of 4 days.


2021 ◽  
Author(s):  
Megan Devane ◽  
Brent Gilpin ◽  
Jennifer Webster-Brown ◽  
Louise Weaver ◽  
Pierre Dupont ◽  
...  

<p>The intensification of dairy farming on the agricultural landscape in New Zealand has raised concerns about pollution sources from dairy faecal runoff into waterways. The transport of faecal pollution from farms into waterways is facilitated by overland flow, which can result from rain and flood events, poorly designed irrigation practices and the washing down of milking sheds.</p><p>An important step for mitigation of pollution is the identification of the source(s) of faecal contamination. When elevated levels of faecal indicator bacteria (FIB) such as <em>Escherichia coli </em>are identified in a waterway, faecal source tracking (FST) tools such as microbial source tracking (MST) using quantitative polymerase chain reaction (qPCR), and faecal steroids (for example, cholesterol) provide information about the sources of faecal contamination. The understanding of the fate (degradation/persistence) and transport of these FST markers in the environment is recognised as an important requirement for the interpretation of water quality monitoring in aquatic environments.</p><p>This study investigated the effects of faecal decomposition on bovine faecal indicators (<em>E. coli </em>and FST markers: bovine-associated qPCR markers and ten faecal steroids) by monitoring the effect of flood and rainfall events on simulated cowpats over a five and a half month period under field conditions. Two separate spring/summer trials were conducted to evaluate: Trial 1) the mobilisation under simulated flood conditions of the faecal indicators from irrigated versus non-irrigated cowpats, Trial 2) the mobilisation of faecal indicators from non-irrigated cowpat flood runoff versus runoff after simulated rainfall onto non-irrigated cowpats.</p><p>The microbial community changes within the decomposing cowpat (as illustrated by amplicon-based metagenomic analysis) were expected to impact on the survival/persistence of the bacterial targets of the MST markers, and also alter the ratio between faecal sterols and their biodegradation products, the stanols. It was hypothesised, therefore, that there would be:</p><ul><li>Changes over time in the concentration of<em> E. coli </em>and the bovine-associated MST markers mobilised into the cowpat runoff</li> <li>Alterations in the FST ratio signature of the ten measured faecal steroids, resulting in a change from a bovine faecal steroid signature in fresh cowpat runoff to other animal faecal signatures in the runoff from decomposing cowpats</li> <li>A difference in the mobilisation decline rates of all FST and microbial markers within a treatment regime and between treatments.</li> </ul><p>Linear regression analysis was undertaken to establish mobilisation decline rates for each of the analytes in the mobilisable phase from the cowpat runoff treatments, with calculation of the time taken in days for reduction in 90% of the concentration (T<sub>90</sub>), and statistical comparison of the regression coefficients (slopes) of all analytes. The results will include a discussion of the impacts of the study’s observations on the interpretation of faecal indicator assessments for water quality monitoring in waterways influenced by sources of faecal contamination.</p>


2014 ◽  
Vol 13 (2) ◽  
pp. 473-488 ◽  
Author(s):  
Melanie Wicki ◽  
Adrian Auckenthaler ◽  
Richard Felleisen ◽  
Fatma Karabulut ◽  
Isabel Niederhauser ◽  
...  

For discriminating between human and animal faecal contamination in water, microbial source tracking (MST) approaches using different indicators have been employed. In the current study, a range of 10 such MST indicators described in the scientific literature were comparatively assessed. Bacteriophages infecting host strains of Bacteroides (GA-17, GB-124 and ARABA 84) as well as sorbitol-fermenting bifidobacteria proved useful for indicating human faecal contamination while Rhodococcus coprophilus was associated with animal-derived faecal contamination. These potential source indicators were present in samples of faecal origin, i.e. either in human wastewater or animal waste, from many different regions in Switzerland and therefore showed a geographic stability. In addition, the MST indicators were abundant in surface water and were even sensitive enough to detect faecal contamination in spring water from two study areas in Switzerland. This is the first study that has compared and successfully applied MST methods in spring water.


2021 ◽  
Vol 188 ◽  
pp. 116507
Author(s):  
Adriana González-Fernández ◽  
Erin M. Symonds ◽  
Javier F. Gallard-Gongora ◽  
Bonnie Mull ◽  
Jerzy O. Lukasik ◽  
...  

2011 ◽  
Vol 45 (1) ◽  
pp. 43-58 ◽  
Author(s):  
M Kirs ◽  
VJ Harwood ◽  
AE Fidler ◽  
PA Gillespie ◽  
WR Fyfe ◽  
...  

2007 ◽  
Vol 56 (11) ◽  
pp. 51-58 ◽  
Author(s):  
T.A. Edge ◽  
S. Hill ◽  
G. Stinson ◽  
P. Seto ◽  
J. Marsalek

Posting or closing of swimming beaches because of faecal contamination is a widespread problem reported in many locations. In a risk-based approach to this problem, the risk to swimmers' health is assessed by field monitoring of indicator bacteria and the associated risks are managed by source controls and other remedial measures. In risk assessment, great advances have been made in recent years with the introduction of microbial source tracking (MST) techniques. Two such techniques, antibiotic resistance analysis and DNA fingerprinting, were applied in a study of causes of faecal contamination at two lake beaches in Toronto, Ontario. Both methods identified bird faeces as the dominant sources of E. coli. Coping with this type of pollution presents a major environmental challenge.


2012 ◽  
Vol 10 (3) ◽  
pp. 358-370 ◽  
Author(s):  
Ekaterina Sokolova ◽  
Johan Åström ◽  
Thomas J. R. Pettersson ◽  
Olof Bergstedt ◽  
Malte Hermansson

The faecal contamination of drinking water sources can lead to waterborne disease outbreaks. To estimate a potential risk for waterborne infections caused by faecal contamination of drinking water sources, knowledge of the pathogen concentrations in raw water is required. We suggest a novel approach to estimate pathogen concentrations in a drinking water source by using microbial source tracking data and fate and transport modelling. First, the pathogen (norovirus, Cryptosporidium, Escherichia coli O157/H7) concentrations in faecal contamination sources around the drinking water source Lake Rådasjön in Sweden were estimated for endemic and epidemic conditions using measured concentrations of faecal indicators (E. coli and Bacteroidales genetic markers). Afterwards, the fate and transport of pathogens within the lake were simulated using a three-dimensional coupled hydrodynamic and microbiological model. This approach provided information on the contribution from different contamination sources to the pathogen concentrations at the water intake of a drinking water treatment plant. This approach addresses the limitations of monitoring and provides data for quantitative microbial risk assessment (QMRA) and risk management in the context of faecal contamination of surface drinking water sources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245910
Author(s):  
Saskia Nowicki ◽  
Zaydah R. deLaurent ◽  
Etienne P. de Villiers ◽  
George Githinji ◽  
Katrina J. Charles

Across the water sector, Escherichia coli is the preferred microbial water quality indicator and current guidance upholds that it indicates recent faecal contamination. This has been challenged, however, by research demonstrating growth of E. coli in the environment. In this study, we used whole genome sequencing to investigate the links between E. coli and recent faecal contamination in drinking water. We sequenced 103 E. coli isolates sampled from 9 water supplies in rural Kitui County, Kenya, including points of collection (n = 14) and use (n = 30). Biomarkers for definitive source tracking remain elusive, so we analysed the phylogenetic grouping, multi-locus sequence types (MLSTs), allelic diversity, and virulence and antimicrobial resistance (AMR) genes of the isolates for insight into their likely source. Phylogroup B1, which is generally better adapted to water environments, is dominant in our samples (n = 69) and allelic diversity differences (z = 2.12, p = 0.03) suggest that naturalised populations may be particularly relevant at collection points with lower E. coli concentrations (<50 / 100mL). The strains that are more likely to have originated from human and/or recent faecal contamination (n = 50), were found at poorly protected collection points (4 sites) or at points of use (12 sites). We discuss the difficulty of interpreting health risk from E. coli grab samples, especially at household level, and our findings support the use of E. coli risk categories and encourage monitoring that accounts for sanitary conditions and temporal variability.


2010 ◽  
Vol 61 (6) ◽  
pp. 1401-1409 ◽  
Author(s):  
M. Gourmelon ◽  
M. P. Caprais ◽  
C. Le Mennec ◽  
S. Mieszkin ◽  
C. Ponthoreau ◽  
...  

Faecal contamination sources were identified in coastal areas around the Guerande-Atlantique peninsula using two microbial source tracking (MST) methods: (i) Bacteroidales host-specific 16S rRNA gene markers measured by real-time PCR and (ii) F-specific bacteriophage (FRNAPH) genotyping. Both methods were used on 63 water samples from 7 water courses. HF183 marker and bacteriophage genogroup II (FRNAPH II) were detected in all water samples and in the majority of water samples, respectively, from La Torre stream (W5), Piriac (W2), R2000 (W3) and Mazy (W7) rain water drains, and also detected, less frequently, in Le Nau drain (W4), suggesting contamination by human faecal sources at these sites. These human markers were weakly detected in Pouliguen channel (W6). Furthermore, BacR and bacteriophage genogroup I (FRNAPH I) were also detected, but at lower concentration and frequency. So, site W6 seems to be contaminated by multiple sources, though mainly human. Finally, BacR was detected twice in Pont d'Armes channel (W1), whereas HF183 was not detected. FRNAPH I and II were detected in only 3 out of 12 water samples. Site W1 seems mainly contaminated by animal sources. As a result of our findings, actions were taken to remediate water and shellfish quality.


Sign in / Sign up

Export Citation Format

Share Document