High-Pressure-Based Food-Processing Technologies for Food Safety and Quality

2021 ◽  
pp. 1-26
Author(s):  
Musfirah Zulkurnain ◽  
Alifdalino Sulaiman ◽  
V.M. Balasubramaniam
2021 ◽  
pp. 1-26
Author(s):  
Musfirah Zulkurnain ◽  
Alifdalino Sulaiman ◽  
V.M. Balasubramaniam

2020 ◽  
Vol 83 (9) ◽  
pp. 1480-1487
Author(s):  
WON CHOI ◽  
SANG-SOON KIM

ABSTRACT Bacillus cereus has been reported as a foodborne pathogen worldwide. Although food processing technologies to inactivate the pathogen have been developed for decades, foodborne outbreaks related to B. cereus have occurred. In the present review, foodborne outbreaks, germination, inactivation, and detection of B. cereus are discussed, along with inactivation mechanisms. B. cereus outbreaks from 2003 to 2016 are reported based on food commodity, number of cases, and consequent illnesses. Germination before sporicidal treatments is highlighted as an effective way to inactivate B. cereus, because the resistance of the pathogen increases significantly following sporulation. Several germinants used for B. cereus are listed, and their efficacies are compared. Finally, recently used interventions with sporicidal mechanisms are identified, and rapid detection methods that have been developed are discussed. Combining two or more interventions, known as the hurdle technology concept, is suggested to maximize the sporicidal effect. Further study is needed to ensure food safety and to understand germination mechanisms and sporicidal resistance of B. cereus. HIGHLIGHTS


2004 ◽  
Vol 87 (6) ◽  
pp. 1466-1474 ◽  
Author(s):  
Roland E Poms ◽  
Elke Anklam

Abstract A review is presented of studies of different processing techniques and their effect on the allergenicity and antigenicity of certain allergenic foods. An overview of investigated technologies is givenwithregardtotheirimpactontheprotein structure and their potential application in the production of hypoallergenic foods. The use of physical processes (such as heating, high pressure, microparticulation, ultrafiltration, and irradiation), chemical processes (such as proteolysis, fermentation, and refining by extraction), and biotechnological approaches, as well as the effects of these processes on individual allergenic foods, are included. Additionally, the implications of food processing for food allergen analysis with respect to food safety assessment and industrial quality control are briefly discussed.


Author(s):  
Ailing Guo ◽  
Qun Li ◽  
Ling Liu ◽  
Xinshuai Zhang ◽  
Wukang Liu ◽  
...  

In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multi-species biofilms. Complex interactions among microorganisms may affect the formation of multi-species biofilms and their resistance to disinfectants, which are food safety and quality concerns. This paper reviews the various interactions among microorganisms in multi-species biofilms, including competitive, cooperative and neutral interactions. Then, the preliminary mechanisms underlying the formation of multi-species biofilms are discussed in relation to factors, such as quorum sensing (QS) signal molecules, extracellular polymeric substances (EPS) and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of inter-species interactions, and provide some implications for the control of multi-species biofilms in food processing.


2002 ◽  
Vol 65 (9) ◽  
pp. 1441-1446 ◽  
Author(s):  
M. A. KHADRE ◽  
A. E. YOUSEF

The rotavirus causes a food-transmitted gastroenteritis that affects mainly children. Currently, the food industry is interested in alternative food-processing technologies, but research on the control of food-transmitted viruses by these technologies is limited. In this study, the human rotavirus was cultured on MA104 cells, and suspensions of the virus were prepared and treated with ozone, high pressure, and pulsed electric field (PEF). Virus viability was quantified as 50% tissue culture infectious doses (TCID50) per milliliter. Ozone at 25 μg/ml decreased rotavirus infectivity by 8 to 9 log10 TCID50/ml. High pressure was extremely effective against the rotavirus; treatment with 300 MPa for 2 min at 25°C inactivated ~8 log10 TCID50/ml. A small fraction of the virus population, however, remained resistant to pressure treatments of up to 800 MPa for 10 min. Viruses surviving these extreme pressures showed a cytopathic effect different from that of the untreated viruses. The rotavirus was found to be resistant to PEF treatment at 20 to 29 kV/cm, for which no appreciable reductions in virus titer were observed.


2019 ◽  
Vol 10 (3) ◽  
pp. 1808-1817 ◽  
Author(s):  
Vishakha Sharma ◽  
Rahul C Ranveer ◽  
Neelam Jain ◽  
Gajender Kumar Aseri

Food safety and quality are the major concern for food processing industries. In today's world, people are getting more conscious about food safety parameters. In this regard, bacteriocin plays a major role in ensuring the safety and quality of food products. From those, LAB bacteriocins are of great interest due to their GRAS status. They are widely used in food preservation, agriculture and pharmaceutical industries. They have also been incorporated into food packaging material due to their both antibacterial and antifungal properties. In this review, we highlighted the possible ways to produce and purify bacteriocin and also the potential application to be used as a natural preservative.


Author(s):  
J Torres ◽  
Pedro Sanz ◽  
Laura Otero ◽  
Mar√≠a P√©rez Lamela ◽  
Marleny Saldaña

Sign in / Sign up

Export Citation Format

Share Document