Operations for Public Water Systems: Conclusion

Author(s):  
Frank R. Spellman ◽  
Lorilee Medders ◽  
Paul Fuller ◽  
Gordon Graham
2006 ◽  
Vol 4 (S2) ◽  
pp. 201-240 ◽  
Author(s):  
Michael Messner ◽  
Susan Shaw ◽  
Stig Regli ◽  
Ken Rotert ◽  
Valerie Blank ◽  
...  

In this paper, the US Environmental Protection Agency (EPA) presents an approach and a national estimate of drinking water related endemic acute gastrointestinal illness (AGI) that uses information from epidemiologic studies. There have been a limited number of epidemiologic studies that have measured waterborne disease occurrence in the United States. For this analysis, we assume that certain unknown incidence of AGI in each public drinking water system is due to drinking water and that a statistical distribution of the different incidence rates for the population served by each system can be estimated to inform a mean national estimate of AGI illness due to drinking water. Data from public water systems suggest that the incidence rate of AGI due to drinking water may vary by several orders of magnitude. In addition, data from epidemiologic studies show AGI incidence due to drinking water ranging from essentially none (or less than the study detection level) to a rate of 0.26 cases per person-year. Considering these two perspectives collectively, and associated uncertainties, EPA has developed an analytical approach and model for generating a national estimate of annual AGI illness due to drinking water. EPA developed a national estimate of waterborne disease to address, in part, the 1996 Safe Drinking Water Act Amendments. The national estimate uses best available science, but also recognizes gaps in the data to support some of the model assumptions and uncertainties in the estimate. Based on the model presented, EPA estimates a mean incidence of AGI attributable to drinking water of 0.06 cases per year (with a 95% credible interval of 0.02–0.12). The mean estimate represents approximately 8.5% of cases of AGI illness due to all causes among the population served by community water systems. The estimated incidence translates to 16.4 million cases/year among the same population. The estimate illustrates the potential usefulness and challenges of the approach, and provides a focus for discussions of data needs and future study designs. Areas of major uncertainty that currently limit the usefulness of the approach are discussed in the context of the estimate analysis.


2001 ◽  
Vol 43 (12) ◽  
pp. 67-71 ◽  
Author(s):  
I. T. Miettinen ◽  
O. Zacheus ◽  
C-H. von Bonsdorff ◽  
T. Vartiainen

Fourteen waterborne epidemics occurred in Finland during 1998-1999. About 7,300 illness cases were registered in these outbreaks. All except one of the waterborne epidemics were associated with undisinfected groundwaters. An equal number of waterborne epidemics occurred in public and private water systems, but most cases of illness occurred in public water systems. The three largest epidemics comprised 6,700 illness cases. Insufficient purification treatment unable to remove Norwalk-like viruses caused the only waterborne epidemic in a surface water plant. The main reasons for groundwater outbreaks were floods and surface runoffs which contaminated water. Norwalk-like viruses caused eight and Campylobacter three of the outbreaks. In two cases the epidemic ceased by the exhaustion of susceptible persons in the exposed community but in most cases it was terminated by changing the water source, boiling the drinking water, and starting chlorination.


Opflow ◽  
2008 ◽  
Vol 34 (5) ◽  
pp. 32-33
Author(s):  
Robert Spon

1973 ◽  
Vol 5 (2) ◽  
pp. 1-6
Author(s):  
Arthur B. Daugherty ◽  
J. Dean Jansma

Water utilities are being subjected to progressively greater economic pressures. The demand for water is increasing, due to both a growing number of customers and rising per capita consumption. Consequently, many utilities are faced with declining reserves of water, necessitating additional investment to develop sources of supply. Frequently, new or enlarged facilities to treat, store and distribute the larger volume of water are required. Public policies, also, are promoting the extension or development of public water systems to serve sparsely populated suburban communities, small towns, and rural areas. All these changes affecting the demand for water, combined with rising construction costs, are causing water utility costs to skyrocket.


2010 ◽  
Vol 23 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Gunther F. Craun ◽  
Joan M. Brunkard ◽  
Jonathan S. Yoder ◽  
Virginia A. Roberts ◽  
Joe Carpenter ◽  
...  

SUMMARY Since 1971, the CDC, EPA, and Council of State and Territorial Epidemiologists (CSTE) have maintained the collaborative national Waterborne Disease and Outbreak Surveillance System (WBDOSS) to document waterborne disease outbreaks (WBDOs) reported by local, state, and territorial health departments. WBDOs were recently reclassified to better characterize water system deficiencies and risk factors; data were analyzed for trends in outbreak occurrence, etiologies, and deficiencies during 1971 to 2006. A total of 833 WBDOs, 577,991 cases of illness, and 106 deaths were reported during 1971 to 2006. Trends of public health significance include (i) a decrease in the number of reported outbreaks over time and in the annual proportion of outbreaks reported in public water systems, (ii) an increase in the annual proportion of outbreaks reported in individual water systems and in the proportion of outbreaks associated with premise plumbing deficiencies in public water systems, (iii) no change in the annual proportion of outbreaks associated with distribution system deficiencies or the use of untreated and improperly treated groundwater in public water systems, and (iv) the increasing importance of Legionella since its inclusion in WBDOSS in 2001. Data from WBDOSS have helped inform public health and regulatory responses. Additional resources for waterborne disease surveillance and outbreak detection are essential to improve our ability to monitor, detect, and prevent waterborne disease in the United States.


1998 ◽  
Vol 90 (12) ◽  
pp. 22-98
Author(s):  
Frederick W. Pontius

Sign in / Sign up

Export Citation Format

Share Document