Infilled rock joint behaviour

2021 ◽  
pp. 54-92
Author(s):  
Buddhima Indraratna ◽  
Asadul Haque
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1928 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Chengguo Zhang ◽  
Ismet Canbulat ◽  
Samad Sepasgozar ◽  
Serkan Saydam

Coal burst occurrences are affected by a range of mining and geological factors. Excessive slipping between the strata layers may release a considerable amount of strain energy, which can be destructive. A competent strata is also more vulnerable to riveting a large amount of strain energy. If the stored energy in the rigid roof reaches a certain level, it will be released suddenly which can create a serious dynamic reaction leading to coal burst incidents. In this paper, a new damage model based on the modified thermomechanical continuum constitutive model in coal mass and the contact layers between the rock and coal mass is proposed. The original continuum constitutive model was initially developed for the cemented granular materials. The application of the modified continuum constitutive model is the key aspect to understand the momentum energy between the coal–rock interactions. The transformed energy between the coal mass and different strata layers will be analytically demonstrated as a function of the rock/joint quality interaction conditions. The failure and post failure in the coal mass and coal–rock joint interaction will be classified by the coal mass crushing, coal–rock interaction damage and fragment reorganisation. The outcomes of this paper will help to forecast the possibility of the coal burst occurrence based on the interaction between the coal mass and the strata layers in a coal mine.


2021 ◽  
Vol 597 ◽  
pp. 126185
Author(s):  
Nikhil Kumar ◽  
Manish Kumar Goyal ◽  
Anil Kumar Gupta ◽  
Srinidhi Jha ◽  
Jew Das ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


Author(s):  
Pinnaduwa H. S. W. Kulatilake ◽  
Shi-Gui Du ◽  
Mawuko Luke Yaw Ankah ◽  
Rui Yong ◽  
Desmond Talamwin Sunkpal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document