A New Vantage Point to Cross-Sectoral Coordination In Iwrm: Water, Energy, Food and Ecosystem Nexus In the Awash River Basin, Ethiopia

2021 ◽  
pp. 77-102
Author(s):  
Adey Nigatu Mersha
Author(s):  
Ruben Müller ◽  
Henok Y. Gebretsadik ◽  
Niels Schütze

Abstract. Recently, the Kessem–Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom – this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.


2018 ◽  
Vol 5 (2) ◽  
pp. 745-746
Author(s):  
Amare Shiberu Keraga ◽  
Zebene Kiflie ◽  
Agizew Nigussie Engida

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3051
Author(s):  
Girma Berhe Adane ◽  
Birtukan Abebe Hirpa ◽  
Chul-Hee Lim ◽  
Woo-Kyun Lee

This study aimed to analyze the probability of the occurrence of dry/wet spell rainfall using the Markov chain model in the Upper Awash River Basin, Ethiopia. The rainfall analysis was conducted in the short rainy (Belg) and long rainy (Kiremt) seasons on a dekadal (10–day) scale over a 30-year period. In the Belg season, continuous, three-dekad dry spells were prevalent at all stations. Persistent dry spells might result in meteorological, hydrological, and socio-economic drought (in that order) and merge with the Kiremt season. The consecutive wet dekads of the Kiremt season indicate a higher probability of wet dekads at all stations, except Metehara. This station experienced a short duration (dekads 20–23) of wet spells, in which precipitation is more than 50% likely. Nevertheless, surplus rainwater may be recorded at Debrezeit and Wonji only in the Kiremt season because of a higher probability of wet spells in most dekads (dekads 19–24). At these stations, rainfall can be harvested for better water management practices to supply irrigation during the dry season, to conserve moisture, and to reduce erosion. This reduces the vulnerability of the farmers around the river basin, particularly in areas where dry spell dekads are dominant.


Sign in / Sign up

Export Citation Format

Share Document