Deflections and dynamic responses of asphalt pavement with graded-broken-stone base

Author(s):  
Aimin Sha ◽  
Zhuangzhuang Liu ◽  
Wanfen Zhao ◽  
Liqun Hu ◽  
Jie Wang ◽  
...  
2011 ◽  
Vol 243-249 ◽  
pp. 4366-4372
Author(s):  
Guang Hai Zhang ◽  
Hai Gui Kang ◽  
Yuan Xun Zheng

In order to study dynamic response of rough road surface resulting from different speeds and loads under a certain roughness for purpose of effective enhancement pertinence for structural design of an asphalt pavement and extension of its service life, displacement meters, stress meters and strain meters are embedded at different structural layers on the rough road surface to monitor the dynamic responses of AC pavement. The result shows that roughness can dramatically increase response on an asphalt road surface resulting from load and speed.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
An-Ping Peng ◽  
Han-Cheng Dan ◽  
Dong Yang

Vibratory compaction of bridge deck pavement impacts the structural integrity of bridges to certain degrees. In this study, we analyzed the dynamic response of different types of concrete-beam bridges (continuous beam and simply supported beam) with different cross-sectional designs (T-beam and hollow-slab beam) under vibratory compaction of bridge deck asphalt pavement. The dynamic response patterns of the dynamic deformation and acceleration of bridges under pavement compaction were obtained by performing a series of field experiments and a three-dimensional finite element simulation. Based on the finite element model, the dynamic responses of bridge structures with different spans and cross-sectional designs under different working conditions of vibratory compaction were analyzed. The use of different vibration parameters for different bridge structures was proposed to safeguard their structural safety and reliability.


2011 ◽  
Vol 97-98 ◽  
pp. 40-44 ◽  
Author(s):  
Chuan Yi Zhuang ◽  
Ai Qin Shen ◽  
Lin Wang

In order to evaluate pavement dynamic responses accurately under truck loading, the full-scale asphalt pavement accelerated loading facility (ALF) was used. 10 strain gauges and 2 soil pressure cells were installed; temperature sensors were also installed in the different depth of the HMA layer. Pavement response was measured under real traffic load with ALF. The measured pavement responses are compared between the pavement sections to evaluate the effects of various experimental factors, such as axle load, speed, et al. Dynamic strain at the bottom of HMA layer and vertical compressive stress on the top of the subgrade were examined in the full-scale testing road, the regression models between dynamic response and axle load, dynamic response and speed were put forward respectively. Studies show that there is not only tensile strain but also compressive strain in the dynamic response, and the strain response is in the station of tension and compression alternation. Under the intermediate temperature, the strain response at the bottom of the asphalt layer is increased linearly with the increase of axle load and the vertical compressive stresses at the top of the subgrade is also increased with the increase of axle load. Speed has a great effect on strain response at the bottom of HMA layer, and has little effect on vertical compressive stress, it affects the loading duration of stress only. The destroy for the pavement by low speed and heavy load is more serious than that is normal.


2016 ◽  
pp. 1287-1296
Author(s):  
Peiqing Wang ◽  
Fujian Wang ◽  
Mingqiang Ke ◽  
Zhigang Lu ◽  
Houquan Zhang ◽  
...  

Author(s):  
Aimin Sha ◽  
Zhuangzhuang Liu ◽  
Wanfen Zhao ◽  
Liqun Hu ◽  
Jie Wang ◽  
...  

2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhizhong Zhao ◽  
Mengchen Li ◽  
Yu Wang ◽  
Wenwen Chen ◽  
Yulong Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document