Census Methods for Benthic Organisms

2021 ◽  
pp. 107-124
Author(s):  
Scott P. Milroy
2005 ◽  
Vol 40 (4) ◽  
pp. 431-447 ◽  
Author(s):  
R. James Maguire ◽  
Suzanne P. Batchelor

Abstract A survey of water and sediment from 152 harbours, marinas and shipping channels across Canada was conducted in 1999 to determine the extent of contamination by tributyltin (TBT) prior to the total ban on its antifouling uses being phased in over the period 2003 to 2008, and to assess the effectiveness of the 1989 regulation of antifouling uses of TBT under the Canadian Pest Control Products Act. TBT was found in sediments in this survey much more frequently than in water. The main conclusion was that by 1999 the regulation had been generally effective in reducing TBT contamination in water, but not sediment, in small-craft marinas and harbours. TBT continued to be found in some freshwater and seawater locations frequented by larger vessels, that could have been legally painted at the time with TBT antifouling paints, at concentrations that could cause chronic toxicity to aquatic organisms. TBT was also found in many marine sediments, and some freshwater sediments, at concentrations that could cause chronic toxicity to sensitive benthic organisms. In addition, TBT concentrations in many marine sediments could cause acute toxicity to sensitive benthic organisms. Because of the long persistence of TBT in sediments, it may pose a hazard to benthic organisms in some locations in Canada for many years after the total ban on antifouling uses of TBT.


1994 ◽  
Vol 30 (10) ◽  
pp. 213-219 ◽  
Author(s):  
Hendrik Pieters ◽  
Victor Geuke

Samples of yellow eel from various locations in the Dutch Rhine area have been analyzed for trend monitoring of mercury since 1977. In the western Rhine delta mercury levels in eels have hardly changed since the seventies, whereas in the eastern part of the Dutch Rhine area a considerable decrease of mercury concentrations in eel has occurred. Because of continuous sedimentation of contaminated suspended matter transported from upstream regions, accumulation rates and concentrations of mercury in eel in the western Rhine delta remained at a relatively high level. Analyses of methyl mercury in biota have been performed to elucidate the role of methyl mercury in the mercury contamination of the Dutch Rhine ecosystem. Low percentages of methyl mercury were observed in zooplankton (3 to 35%). In benthic organisms (mussels) percentages of methyl mercury ranged from 30 to 57%, while in fish species and liver of aquatic top predator birds almost all the mercury was present in the form of methyl mercury (> 80%). During the period 1970-1990 mercury concentrations of suspended matter in the eastern Rhine delta have drastically decreased. These concentrations seemed to be highly correlated with mercury concentrations of eel (R = 0.84). The consequences of this relation are discussed.


Author(s):  
Angiolillo Michela ◽  
Gérigny Olivia ◽  
Valente Tommaso ◽  
Fabri Marie-Claire ◽  
Tambute Eric ◽  
...  

2015 ◽  
Vol 6 (5) ◽  
pp. 521-531 ◽  
Author(s):  
Adi Lavy ◽  
Gal Eyal ◽  
Benjamin Neal ◽  
Ray Keren ◽  
Yossi Loya ◽  
...  

1945 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
H. Elliott McClure
Keyword(s):  

Author(s):  
Julie Adams

Because the density of heavy fuel oil (HFO) is equal to or greater than that of freshwater, it behaves differently than lighter oils that float. Heavy fuel oil can sink to the bottom or be suspended in the water column and affect aquatic organisms that are not typically exposed to floating oils. Most research on oil spill technologies thus far examines the direct exposure of rainbow trout to floating or submerged oil droplets; there is little knowledge of the impacts of non‐floating heavy fuel oil on the water column and benthic organisms exposed to oil that accumulates in sediments. The toxicity of sunken HFO 6303 and Medium South American (MESA; reference) crude oil, as well as the effects of weathering on toxicity to embryos of rainbow trout were assessed using increasing concentrations of oil on gravel substrate in continuous‐flow desorption columns. Toxicity was assessed by measurement of the rates of mortality and growth, and the prevalence of blue sac disease, a hallmark sign of oil toxicity. The lower median lethal concentration for HFO compared to MESA indicated that HFO is more toxic. Interestingly, the LC50 values for fresh and weathered for both oils were similar, indicating little change in toxicity when the oil weathers naturally. Repetition of this experiment and analysis of PAH content in each treatment will provide more insight into the environmental and health risks associated with sunken heavy fuel oil.   


Sign in / Sign up

Export Citation Format

Share Document