scholarly journals Soil Amendments for Sustainable Intensification

2018 ◽  
pp. 3-18
Author(s):  
Suhas P. Wani ◽  
Girish Chander ◽  
G. Pardhasaradhi
2018 ◽  
Vol 69 (3) ◽  
pp. 141-153 ◽  
Author(s):  
Katharina Maria Keiblinger ◽  
Rosana Maria Kral

Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amendments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges. While the ecological effects of these soil amendments are studied intensively, the extent to which they can contribute to sustainable intensification is not fully explored. We want to contribute to the debate by providing an overview that seeks to integrate ecological evidence with the agronomic perspective.


2013 ◽  
Vol 21 (7) ◽  
pp. 810-816
Author(s):  
Wen-Jun DONG ◽  
Pei-Zhi XU ◽  
Ren-Zhi ZHANG ◽  
Xu HUANG ◽  
Hua-Ping ZHENG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 529a-529
Author(s):  
Rebecca L. Darnell ◽  
J.G. Williamson ◽  
T.A. Obreza

A high-density planting of three southern highbush cultivars was established in 1994 in southwest Florida to test the feasibility of a non-dormant blueberry production system. A non-dormant system involves continuous application of nitrogen throughout fall and winter, which enables the plants to avoid the normal dormancy cycle and the concomitant chilling requirement. Three nitrogen fertilizer rates and two organic soil amendments (muncipal solid waste compost and acidic peat) were evaluated for effects on maintaining plant growth in this system. In general, increasing N rates from 84 to 252 kg·ha–1 increased plant canopy volume, leaf retention, and rate of new vegetative budbreak. Plant height and volume were consistently greater for plants grown in the compost compared to the peat amendment, but there were no differences in leaf retention or vegetative budbreak between the two soil amendments. Flower bud density and fruit yield were increased in plants grown in the compost compared to the peat, while N rate had no effect on either. Plants in this non-dormant system have shown no deleterious growth effects, suggesting that establishing a blueberry planting in a warm winter climate is feasible under the described conditions.


2020 ◽  
Vol 156 ◽  
pp. 112880
Author(s):  
Rodrigue Daassi ◽  
Pierre Betu Kasangana ◽  
Damase P. Khasa ◽  
Tatjana Stevanovic

Sign in / Sign up

Export Citation Format

Share Document