Advanced Software Engineering Design Concepts: Reuse, Granularity, Patterns, and Robustness

2017 ◽  
pp. 249-264
Author(s):  
Bhuvan Unhelkar
Author(s):  
Christopher A. Gosnell ◽  
Scarlett R. Miller

Engineering design idea-generation sessions often result in dozens, if not hundreds, of ideas. These ideas must be quickly evaluated and filtered in order to select a few candidate concepts to move forward in the design process. While creativity is often stressed in the conceptual phases of design, it receives little attention in these later phases — particularly during concept selection. This is largely because there are no methods for quickly rating or identifying worthwhile creative concepts during this process. Therefore, the purpose of this study was to develop and test a novel method for evaluating the creativity and feasibility of design concepts and compare this method to gold standards in our field. The SCAT method employed in this paper uses word selections and semantic similarity to quickly and effectively evaluate candidate concepts for their creativity and feasibility. This method requires little knowledge of the rating process by the evaluator. We tested this method with 10 engineering designers and three different design tasks. Our results revealed that SCAT ratings can be used as a proxy for measuring design concepts but there are modifications that could enhance its utility. This work contributes to our understanding of how to evaluate creativity after idea generation and provides a framework for further research in this field.


2016 ◽  
Author(s):  
Ninger Zhou ◽  
Tarun George ◽  
Joran Booth ◽  
Jeffrey Alperovich ◽  
Senthil Chandrasegaran ◽  
...  

1992 ◽  
Vol 3 (6) ◽  
pp. 259
Author(s):  
A. Finkelstein ◽  
B. Nuseibeh ◽  
L. Finkelstein ◽  
J. Huang

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Anant Chawla ◽  
Joshua D. Summers

Although morphological charts are widely taught used tools in engineering design, little formal guidance is provided regarding their representation and exploration. Thus, an experiment was conducted to elucidate the influence of functional ordering on the exploration of morphological charts. Two design prompts were used, each with five different functional arrangements: (1) most-to-least important function, (2) least-to-most important function, (3) input-to-output function, (4) output-to-input function, and (5) Random. Sixty-seven junior mechanical engineering students were asked to generate integrated design concepts from prepopulated morphological charts for each design prompt. The concepts were analyzed to determine the frequency with which a given means was selected, how much of the chart was explored, the sequence of exploration, and the influence of function ordering. Results indicated a tendency to focus upon the initial columns of the chart irrespective of functional order. The most-to-least-important functional order resulted in higher chances and a uniformity of design space exploration.


Author(s):  
Jacquelyn K. Stroble ◽  
Robert B. Stone ◽  
Steve E. Watkins

Engineering education has been evolving over the last few decades to include more engineering design courses in the curriculum or offer a new degree altogether that allows one to design a unique degree suited to his or her own interests and goals. These new engineering curricula produce engineers with strong backgrounds in fundamental engineering and design knowledge, which make them strong candidates for solving complex and multidisciplinary engineering problems. Many universities have embraced the need for multidisciplinary engineers and have developed interdisciplinary engineering design courses for many experience levels. Such courses build a foundation in engineering design through a unique series of lectures, real-world examples and projects, which utilize validated design tools and methodologies. This paper assesses the value of using design tools, web-based and downloadable, in undergraduate interdisciplinary design engineering courses. Six design tools are tested for their ability to increase the student’s knowledge of six design concepts. Also, the tools are evaluated for ease of use and if the different digital formats affect their educational impact. It was found that most students valued all the design tools and that the tools reinforced all but one design concept well. Quotes from the open-ended portion of the survey demonstrate the acceptance of the design tools and a general understanding of the importance of engineering design. The design tools, design concepts course goals, survey questions and survey results are discussed.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


Sign in / Sign up

Export Citation Format

Share Document