Active Fault Tolerant Attitude Estimation

Author(s):  
Chingiz Hajiyev ◽  
Halil Ersin Soken
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


2017 ◽  
Vol 40 (10) ◽  
pp. 2991-2998
Author(s):  
Quanchao Dong ◽  
Hongyan Yang

This paper presents a finite frequency-based active fault tolerant control approach for the compensation of unknown failures in linear time-delay plants. An integration of fault detection filter based on observer technology and [Formula: see text] controller in residual feedback form is considered in the active fault tolerant control system. Different from the traditional schemes, exact fault estimation is not necessary in the proposed active fault tolerant control. To achieve the desired system performance when a fault occurs, the residual is directly embedded in the control loop as a feedback term to compensate the influence of fault. By employing the Generalized Kalman–Yakubovich–Popov lemma, we derive the sufficient conditions of the existence of such an active fault tolerant control plant, and iterative algorithms are applied to obtain the solutions to the fault detection filter and controller parameter matrices. Finally, simulation results are proposed to demonstrate the effectiveness of the developed scheme.


Author(s):  
Z Weng ◽  
R. J. Patton ◽  
P Cui

This paper proposes an active fault-tolerant control scheme based on a gain-scheduled H∞ design strategy. Under the assumption that the effects of faults on the system can be of affine parameter dependence, a reconfigurable robust H∞ controller is developed. The resulting controller is a function of the fault effect factors, which can be derived online from the residual vector of the fault detection and isolation (FDI) mechanism. To demonstrate the effectiveness of the proposed method, a non-linear double inverted pendulum system with a fault in the motor tachometer loop is considered. The adaptive fault-tolerant controller recovers well from the unstable system with loop failure.


Sign in / Sign up

Export Citation Format

Share Document