Chemical Kinetics and Kinetic Parameters

2006 ◽  
pp. 391-446
2011 ◽  
Vol 79 ◽  
pp. 71-76 ◽  
Author(s):  
Wei Zhong ◽  
Zhou Tian

In this paper, a summary of Genetic Algorithm methods developed recent years applied in chemical reaction kinetics was presented. The applications of the Genetic Algorithm in reduction of the chemical reaction kinetics, estimation of the chemical kinetic parameters and calculation of the chemical kinetic equations were expounded here. Eventually, the confronted problem and developing trend of the application of Genetic Algorithm methods in chemical kinetics were reviewed.


1995 ◽  
Vol 117 (4) ◽  
pp. 329-336 ◽  
Author(s):  
N. Bettagli ◽  
U. Desideri ◽  
D. Fiaschi

The aim of the present paper is to study the gasification and combustion of biomass and waste materials. A model for the analysis of the chemical kinetics of gasification and combustion processes was developed with the main objective of calculating the gas composition at different operating conditions. The model was validated with experimental data for sawdust gasification. After having set the main kinetic parameters, the model was tested with other types of biomass, whose syngas composition is known. A sensitivity analysis was also performed to evaluate the influence of the main parameters, such as temperature, pressure, and air-fuel ratio on the composition of the exit gas. Both oxygen and air (i.e., a mixture of oxygen and nitrogen) gasification processes were simulated.


2008 ◽  
Author(s):  
Sumit Basu ◽  
Yuan Zheng ◽  
Jay P. Gore

Onboard hydrogen storage is an enabling factor in the development of fuel cell powered passenger cars. Ammonia borane (AB) hydrolysis is one of the potential technologies for onboard hydrogen storage. In this study, kinetics of catalyzed ammonia borane hydrolysis using ruthenium-supported-on-carbon has been measured. For reacting flows, chemical kinetics determines the rates of heat generation and species production or consumption in the overall energy and mass balances respectively. Kinetic measurements under isothermal conditions provide critical data for the design of hydrolysis reactors. It is, however, not always possible to eliminate the effects of internal diffusion in a heterogeneous chemical reaction. In such cases, the reaction efficiency (η), which depends on the effective liquid phase diffusivity (Deff) in the catalyst medium, should be determined. Determination of intrinsic kinetic parameters using apparent kinetics data is, thus, a challenge. In this study, the change in AB concentration (CAB) with reaction time (t) has been directly measured. It was observed that the AB hydrolysis reaction had orders between zero and one in a temperature range of 26°C to 55°C. A unified Langmuir-Hinshelwood (LH) model has been adopted to describe the reaction kinetics. The intrinsic kinetic parameters (A, Ea, ΔHads, K0) as well as Deff need to be estimated by inverse analysis of the measured CAB vs t data. Conventionally, kinetic parameters are determined using linear fitting. Sometimes, however, it is impossible to converge to a unique value by using the linear fitting approach as there are several values providing regression coefficients greater than 0.99. In this study, the multiple-variable inverse problem has been solved using a nonlinear fitting algorithm based on Powell’s conjugate-gradient error minimization. This algorithm minimizes errors without using derivatives. As a result, the uncertainties in the kinetic parameter estimation have been significantly reduced by the new approach.


2018 ◽  
Vol 19 (3) ◽  
pp. 1-14 ◽  
Author(s):  
Elena V. Kustova ◽  
◽  
Aleksei S. Savelev ◽  
Anastasia A. Lukasheva ◽  
◽  
...  

1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


Sign in / Sign up

Export Citation Format

Share Document