scholarly journals Searching for Uncertainty Regions of Kinetic Parameters in the Mathematical Models of Chemical Kinetics Based on Interval Arithmetic

Author(s):  
V.A. Vaytiev ◽  
S.A. Mustafina
2011 ◽  
Vol 79 ◽  
pp. 71-76 ◽  
Author(s):  
Wei Zhong ◽  
Zhou Tian

In this paper, a summary of Genetic Algorithm methods developed recent years applied in chemical reaction kinetics was presented. The applications of the Genetic Algorithm in reduction of the chemical reaction kinetics, estimation of the chemical kinetic parameters and calculation of the chemical kinetic equations were expounded here. Eventually, the confronted problem and developing trend of the application of Genetic Algorithm methods in chemical kinetics were reviewed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Christina Boukouvala ◽  
Joshua Daniel ◽  
Emilie Ringe

AbstractUnlike in the bulk, at the nanoscale shape dictates properties. The imperative to understand and predict nanocrystal shape led to the development, over several decades, of a large number of mathematical models and, later, their software implementations. In this review, the various mathematical approaches used to model crystal shapes are first overviewed, from the century-old Wulff construction to the year-old (2020) approach to describe supported twinned nanocrystals, together with a discussion and disambiguation of the terminology. Then, the multitude of published software implementations of these Wulff-based shape models are described in detail, describing their technical aspects, advantages and limitations. Finally, a discussion of the scientific applications of shape models to either predict shape or use shape to deduce thermodynamic and/or kinetic parameters is offered, followed by a conclusion. This review provides a guide for scientists looking to model crystal shape in a field where ever-increasingly complex crystal shapes and compositions are required to fulfil the exciting promises of nanotechnology.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 925 ◽  
Author(s):  
Victor Ciribeni ◽  
Regina Bertero ◽  
Andrea Tello ◽  
Matías Puerta ◽  
Enzo Avellá ◽  
...  

Over the last decades, several reliable mathematical models have been developed for simulating ore comminution processes and determining the Work Index. Since Fred Chester Bond developed the Work Index standard procedure in 1961, numerous attempts have been made to find simpler, faster, and economically more advantageous alternative tests. In this paper, a Bond test simulation based on the cumulative kinetic model (CKM) has been checked on a spreadsheet. The research has been accomplished by conventionally determining the kinetic parameters for some Ag and Au ores and for three pure minerals and one rock that are common constituents of the gangue rock. Analysis of the results obtained allowed to develop a simplified procedure for calculating the kinetic parameters and their application to Work Index determination through simulation.


1995 ◽  
Vol 117 (4) ◽  
pp. 329-336 ◽  
Author(s):  
N. Bettagli ◽  
U. Desideri ◽  
D. Fiaschi

The aim of the present paper is to study the gasification and combustion of biomass and waste materials. A model for the analysis of the chemical kinetics of gasification and combustion processes was developed with the main objective of calculating the gas composition at different operating conditions. The model was validated with experimental data for sawdust gasification. After having set the main kinetic parameters, the model was tested with other types of biomass, whose syngas composition is known. A sensitivity analysis was also performed to evaluate the influence of the main parameters, such as temperature, pressure, and air-fuel ratio on the composition of the exit gas. Both oxygen and air (i.e., a mixture of oxygen and nitrogen) gasification processes were simulated.


Sign in / Sign up

Export Citation Format

Share Document