Orphan Receptors

Author(s):  
Olivier Civelli ◽  
Yumiko Saito ◽  
Zhiwei Wang
Keyword(s):  
2019 ◽  
Vol 16 (10) ◽  
pp. 1167-1174 ◽  
Author(s):  
Kamil J. Kuder ◽  
Tadeusz Karcz ◽  
Maria Kaleta ◽  
Katarzyna Kiec-Kononowicz

Background: : One of the best known to date GPCR class A (Rhodopsin) includes more than 100 orphan receptors for which the endogenous ligand is not known or is unclear. One of them is N-arachidonyl glycine receptor, named GPR18, a receptor that has been reported to be activated by Δ9-THC, endogenous cannabinoid receptors agonist anandamide and other cannabinoid receptor ligands suggesting it could be considered as third cannabinoid receptor. GPR18 activity, as well as its distribution might suggest usage of GPR18 ligands in treatment of endometriosis, cancer, and neurodegenerative disorders. Yet, so far only few GPR18 antagonists have been described, thus only ligand-based design approaches appear to be most useful to identify new ligands for this orphan receptor. Methods: : Main goal of this study, GPR18 inactive form homology model was built on the basis of the evolutionary closest homologous template: Human P2Y1 Receptor crystal structure. Results: : Obtained model was further evaluated and showed active/nonactive ligands differentiating properties with acceptable confidence. Moreover, it allowed for preliminary assessment of proteinligand interactions for a set of previously described ligands. Conclusion:: Thus collected data might serve as a starting point for a discovery of novel, active GPR18 blocking ligands.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2914
Author(s):  
Kevin J. H. Lim ◽  
Yan Ping Lim ◽  
Yossa D. Hartono ◽  
Maybelle K. Go ◽  
Hao Fan ◽  
...  

Natural products make up a large proportion of medicine available today. Cannabinoids from the plant Cannabis sativa is one unique class of meroterpenoids that have shown a wide range of bioactivities and recently seen significant developments in their status as therapeutic agents for various indications. Their complex chemical structures make it difficult to chemically synthesize them in efficient yields. Synthetic biology has presented a solution to this through metabolic engineering in heterologous hosts. Through genetic manipulation, rare phytocannabinoids that are produced in low yields in the plant can now be synthesized in larger quantities for therapeutic and commercial use. Additionally, an exciting avenue of exploring new chemical spaces is made available as novel derivatized compounds can be produced and investigated for their bioactivities. In this review, we summarized the biosynthetic pathways of phytocannabinoids and synthetic biology efforts in producing them in heterologous hosts. Detailed mechanistic insights are discussed in each part of the pathway in order to explore strategies for creating novel cannabinoids. Lastly, we discussed studies conducted on biological targets such as CB1, CB2 and orphan receptors along with their affinities to these cannabinoid ligands with a view to inform upstream diversification efforts.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
T Kozlova ◽  
G V Pokholkova ◽  
G Tzertzinis ◽  
J D Sutherland ◽  
I F Zhimulev ◽  
...  

Abstract DHR38 is a member of the steroid receptor superfamily in Drosophila homologous to the vertebrate NGFI-B-type orphan receptors. In addition to binding to specific response elements as a monomer, DHR38 interacts with the USP component of the ecdysone receptor complex in vitro, in yeast and in a cell line, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly. We characterized the molecular structure and expression of the Dhr38 gene and initiated an in vivo analysis of its function(s) in development. The Dhr38 transcription unit spans more than 40 kb in length, includes four introns, and produces at least four mRNA isoforms differentially expressed in development; two of these are greatly enriched in the pupal stage and encode nested polypeptides. We characterized four alleles of Dhr38: a P-element enchancer trap line, l(2)02306, which shows exclusively epidermal staining in the late larval, pre-pupal and pupal stages, and three EMS-induced alleles. Dhr38 alleles cause localized fragility and rupturing of the adult cuticle, demonstrating that Dhr38 plays an important role in late stages of epidermal metamorphosis.


2004 ◽  
Vol 1 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Nathalie Suarez Gonzalez ◽  
Didier Communi ◽  
Sébastien Hannedouche ◽  
Jean-Marie Boeynaems

1997 ◽  
Vol 17 (1-3) ◽  
pp. 545-550 ◽  
Author(s):  
O. Civelli ◽  
H. P. Nothacker ◽  
A. Bourson ◽  
A. Ardati ◽  
F. Monsma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document